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Preface

In front of you is a collection of solved problems and exercises covered in the course Alge-
bra IV - Algebraic Structures, intended for students of the study program Mathematics
at UP FAMNIT. I hope you find this notebook useful, though it is definitely not meant to
be a substitute for tutorials and lectures, where things are explained in more detail and
more comprehensively.

The content and assignments are in line with the curriculum. The topics that are
covered include: rings, fraction fields, factorisation of polynomials over fields, integral
domains, ideals, factor rings, extension fields, finite fields, field automorphisms.

The solutions are written as accurately and precisely as possible. In addition, every
section contains a theoretical background and additional tasks that are left as an exercise
for the reader.

Koper, August 2021

Amar Bapić
amar.bapic@famnit.upr.si

mailto:amar.bapic@famnit.upr.si




1. Rings

1.1 Introduction to Rings
1.1.1 Theoretical background

Definition 1.1.1 A ring (R,+, ·) is a set R together with two binary operations + and ·,
which we call addition and multiplication, defined on R such that the following axioms
hold:
(R1) (R,+) is an abelian group.
(R2) Multiplication is associative.
(R3) For all a,b,c ∈ R it holds

(a+b) · c = a · c+b · c and c · (a+b) = c ·a+ c ·a.

We denote the neutral element for addition with 0 or 0R (if it is not clear from context).
If the ring R has a neutral element for multiplication, we will call it the unity and denote
it with 1 or 1R. In this case we say that R is a ring with unity. If multiplication is
commutative in R, then R is a commutative ring. The additive inverse of a ∈ R is denoted
with −a. We define na to be

na =


a+a+ . . .+a, n > 0
0R, n = 0 (0R ∈ R, 0 ∈ Z)
(−a)+(−a)+ . . .+(−a), n < 0

The multiplicative inverse of an element a in a ring R with unity 1 6= 0 is the element
a−1 ∈ R, for which it holds that aa−1 = a−1a = q. In this case, we say that a is a unit.

If in a ring R with unity 1 6= 0 all nonzero elements are units, then we say that R is a
division ring. Furthermore, if a division ring is commutative, we call it a field.
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Definition 1.1.2 A subset S of a ring R is a subring of (R,+, ·), if (S,+, ·) is a ring.

Theorem 1.1.1 The subset S⊂ R of a ring R is a subring of R if and only if:
1. 0R ∈ S,
2. (a−b) ∈ S, ∀a,b ∈ S,
3. ab ∈ S, ∀a,b ∈ S.

Theorem 1.1.2 Let R be a ring with zero 0. Then, for all a,b ∈ R, it holds:
(i) 0a = a0 = 0.

(ii) a(−b) = (−a)b =−(ab).
(iii) (−a)(−b) = ab

Definition 1.1.3 Let (K,+K, ·K) in (R,+R, ·R) be two rings. The mapping φ : K→ R is
called a homomorphism, if for all a,b ∈ K it holds:

1. φ(a+K b) = φ(a)+R φ(b).
2. φ(a ·K b) = φ(a) ·R φ(b).

We define the kernel of φ to be the set

kerφ = {x ∈ K : φ(x) = 0R},

and the image of φ to be
imφ = {φ(x) : x ∈ K}.

Theorem 1.1.3 Let φ : R→ R′ be a ring homomorphism. If 0 is the additive identity in
R, then φ(0) = 0′ is the additive identity in R′, if a ∈ R, then φ(−a) =−φ(a). If S is a
subring of R, then φ [S] = {φ(s) : s ∈ S} is a subring of R′. If R has a unity 1, then φ(1)
is the unity in φ [R].

R φ(1) is not necessarily the unity in R′.

� Example 1.1 Let R1,R2, . . . ,Rn be rings. For an arbitrary i ∈ {1, . . . ,n} we define
a mapping πi : R1× R2× . . .× Rn → Ri with πi(x1,x2, . . . ,xn) = xi which we call the
projective homomorphism. �

1.1.2 Problems
1. Let X be a nonempty set and R = 2X its power set. Is (R,∪,∩) a ring?

2. Let X be a nonempty set. Show that the power set R = 2X , together with the
set operations of symmetric difference A + B := A4B = (A∩ B)∪ (B∩ A) and
intersection AB = A∩B, is a ring. Is R commutative? Does it have a unity?

3. Let (G,+) be an abelian group. In G we define the product ab = 0 for all a,b ∈ G.
Show that G is a ring.

4. In the ring R = R2×2 we are given the subset M of all matrices of the form
[

a b
b a

]
.

(a) Show that M is a subring of R.
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(b) Is M commutative? Does it have a unity?

5. If it exists, find an example of a homomorphism φ : K→ K′, where K and K′ are
rings with unity 1 6= 0 and 1′ 6= 0′, respectively. Furthermore, it holds φ(1) 6= 0′ and
φ(1) 6= 1′.

6. Find all ring homomorphisms of the ring Z to Z.

7. Find all ring homomorphisms of Z×Z to Z.

8. Let (R,+, ·) be an algebraic structure that satisfies all the ring axioms except com-
mutativity of addition. Show that if R has a unity, then R is a ring.

9. Show that the ring R does not contain a nonzero nilpotent1 if and only if 0 is the
only solution of the equation x2 = 0 in R.

10. Show that every Boolean ring2 is also von Neumann regular3. Is it commutative?

11. Let R be a ring without nonzero nilpotents. Then, for every idempotent e ∈ R and
every x ∈ R, it holds xe = ex.

1.1.3 Solutions
1. No, because (K,∪) is not a group. More precisely, for an arbitrary set A 6= /0, there

does not exist a set A such that A∪A = /0.
2. Let A,B,C ∈ R be arbitrary sets. The first thig one always has to check, is the closure

of the operations of addition and multiplication. It is easy to see that A+B and A ·B
are always contained in R.

(a) i. associativity of addition.

A+(B+C) = (A∩B+C)∪ (A∩ (B+C))

= (A∩ (B∩C)∪ (B∩C))∪ (A∩ ((B∩C)∪ (B∩C)))

= (A∩ (B∪C)∩ (B∪C)∪ (A∩B∩C)∪ (A∩B∩C)

= (A∩B∩B)∪ (A∩B∩C)∪ (A∩C∩B) ∪
∪ (A∩C∩C)∪ (A∩B∩C)∪ (A∩B∩C)

= (A∩B∩C)∪ (A∩B∩C)∪ (A∩B∩C)∪ (A∩B∩C)

Similarly, one computes that

(A+B)+C = (A∩B∩C)∪ (A∩B∩C)∪ (A∩B∩C)∪ (A∩B∩C).

Thus, the operation is associative.
ii. existence of neutral element. Let A be an arbitrary set in R. Since

A+ /0 = /0+A = A,

we have that /0 ∈ R is the additive identity.
1An element a of a ring R is called nilpotent if there exists a positive integer n ∈ Z+ such that an = 0.
2A ring R with unity is said to be Boolean if for all a ∈ R we have a2 = a. That is, every element is an

idempotent.
3A nontrivial ring with unity R in which for every element x ∈ R exists y ∈ R, such that xyx = x, is said to

be von Neumann regular.
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iii. existence of units. for an arbitrary set A ∈ R there exists a set A = A
such that

A+A = A+A = /0.

iv. commutativity. Because of the commutativity of the operations ∪ and
∩, it holds

A+B = (A∩B)∪ (A∩B) = (B∩A)∪ (B∩A) = B+A.

Thus, (R,+) is an abelian group.
(b) It is easy to see that

A · (B ·C) = A∩ (B∩C) = (A∩B)∩C = (A ·B) ·C

because of the associativity of ∩. Thus, (R, ·) is a semigroup.
(c) distributivity laws.

A · (B+C) = A∩ (B+C) = A∩ ((B∩C)∪ (B∩C))

= (A∩ (B∩C))∪ (A∩ (B∩C))

= (A∩B∩C)∪ (A∩B∩C)

A ·B+A ·C = (A∩B)+(A∩C) = ((A∩B)∩ (A∩C))∪ ((A∩B)∩ (A∩C))

= ((A∩B)∩ (A∪C)∪ ((A∪B)∩ (A∩C))

= (A∩B∩A)∪ (A∩B∩C)∪ (A∩A∩C)∪ (B∩A∩C)

= (A∩B∩C)∪ (A∩B∩C)

Thus, A · (B+C) = A ·B+B ·C. Analogously, one shows that (A+B) ·C =
A ·C+B ·C.

Hence, we conclude that (R,+, ·) is a ring. Since ∩ is commutative, it follows
that A ·B = B ·A. The ring R contains a unity 1 = X , because for an arbitrary set
/0 6= A ∈ K it holds A ·X = X ·A = A. Thus, R is a commutative ring with unity X .

3. We need to check if (G, ·) is a semigroup and if the distributivity laws hold. Let
a,b,c ∈ G be arbitrary. Since a ·b = 0 ∈ G, the operation is closed. Associativity
holds as well:

a · (b · c) = a ·0 = 0,
(a ·b) · c = 0 · c = 0.

Hence, (G, ·) is a semigroup. One can easily confirm distributivity as well.
4. (a) We will use Theorem 1.1.2. The additive identity in the ring R = R2×2 is

OR =

[
0 0
0 0

]
and obviously OR ∈M. Let A,B ∈M be arbitrary.

A−B =

[
a b
b a

]
−
[

c d
d c

]
=

a−b︸︷︷︸
∈R

b−d︸ ︷︷ ︸
∈R

b−d a−b

 ∈M

AB =

[
a b
b a

]
·
[

c d
d c

]
=

[
ac+bd ad +bc
ad +bc ac+bd

]
∈M

Since all conditions of Theorem 1.1.2 are satisfied, we conclude that M is a
subring of R with standard operations + and · in R2×2.
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(b) From the commutativity of + and · in R, one easily confirms that A ·B = B ·A.

The ring M has unity I2 =

[
1 0
0 1

]
. Thus, M is a commutative ring with unity

I2.
5. Let us consider the mapping φ : Z→ Z×Z defined by φ(n) = (n,0). One can easily

show that φ is a ring homomorphism. The unity in Z is 1, in Z×Z it is 1′ = (1,1)
and it holds that 1 6= 1′. On the other hand, φ(1) = (1,0) 6= (1,1) = 1′.

6. Ring homomorphisms preserve idempotents. Thus, since in Z it holds that 12 = 1
we have φ(1)2 = φ(1). This implies that φ(1) = 1 or φ(1) = 0. Furthermore,

φ(n) = φ(n ·1) = φ(1+1+ . . .+1) = φ(1)+ . . .+φ(1) = nφ(1)

and since φ(−n) =−φ(n) we have that for every n ∈ Z, φ(n) = 0 or φ(n) = n. This
are the only homomorphisms, the trivial and identity homomorphism.

7. Since (0,1) and (1,0) generate the additive group Z×Z, their images determine the
seeked homomorphisms:

ϕ(m,n) = ϕ(m(1,0)+n(0,1)) = ϕ(m(1,0))+ϕ(n(0,1))
= ϕ((1,0)+ . . .+(1,0)︸ ︷︷ ︸

m

)+ϕ((0,1)+ . . .+(0,1)︸ ︷︷ ︸
n

)

= ϕ(1,0)+ . . .+ϕ(1,0)︸ ︷︷ ︸
m

+ϕ(0,1)+ . . .+ϕ(0,1)︸ ︷︷ ︸
n

= mϕ(1,0)+nϕ(0,1).

Since (0,1) and (1,0) are idempotents in Z×Z, they have to map to 0 or 1. Thus:

ϕ1(m,n) = 0,
ϕ2(m,n) = m,

ϕ3(m,n) = n,
ϕ4(m,n) = m+n.

We can easily confirm that ϕ1,ϕ2 in ϕ3 are ring homomorphisms. Since

ϕ4(m,n)=ϕ4((1,1)(m,n))=ϕ4(1,1)ϕ4(m,n)= (1+1)(m+n)= 2(m+n)= 2ϕ4(m,n), 

ϕ4 is not a ring homomorphism.
8. Let a,b ∈ R be arbitrary. Since R has unity 1, it holds:

0 = b ·0 = b · (1+(−1)) = b ·1+b · (−1)⇒ b(−1) =−b.

On the other hand,

0 = (−b)+(−a)+a+b = b(−1)+a(−1)+a+b = (b+a)(−1)+a+b
⇒ a+b =−(b+a)(−1) in

0 = (b+a) ·0 = (b+a) · ((−1)+1) = (b+a)(−1)+b+a
⇒ b+a =−(b+a)(−1).

Thus, a+b = b+a.
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9. ⇒ If R has no nonzero nilpotents, the only solution of the equation x2 = 0 is x = 0.
⇐ Let x = 0 be the only solution of the equation x2 = 0 and let a 6= 0 be a nilpotent.

With n we denote the smallest positive integer for which an = 0.If n is even, then

a
n
2︸︷︷︸

not a nilpotent

6= 0⇒ an =
(

a
n
2

)2
= 0⇒ a

n
2 is a nonzero solution of x2 = 0  

If n is odd, then

a
n+1

2 6= 0⇒
(

a
n+1

2

)2
= an+1 = ana= 0a= 0⇒ a

n+1
2 is a nonzero solution of x2 = 0  

Torej, R has no nonzero nilpotents.
10. Let R be a Boolean ring and let x ∈ R be arbitrary. If we take y = x we have

xyx = x3 = x2x = xx = x2 = x,

thus R is von Neumann regular. Let a,b ∈ R be arbitrary.

a+b = (a+b) = a2 +ab+ba+b2 = a+ab+ba+b
⇒ a+b = a+b+ab+ba ((R,+) abelian group)
⇒ 0 = ab+ba (cancellation laws)
⇒ ab =−ba

For b = a we have aa =−aa⇒ a2 =−a2⇒ a =−a. Thus, every element in R is
its own additive inverse. More precisely, since ba ∈ R it follows ba =−ba. Thus,
ab =−ba = ba.

11. Let us consider the elements (xe− exe)2 and (ex− exe)2.

(xe− exe)2 = (xe− exe)(xe− exe)

= xexe− xe2xe− exexe+ exe2xe
= xexe− xexe− exexe+ exexe
= 0
⇒ xe− exe = 0 (Problem 9)

(ex− exe)2 = (ex− exe)(ex− exe)

= exex− exexe− exe2x+ exe2xe
= exex− exexe− exex+ exexe
= 0
⇒ ex− exe = 0 (Problem 9)

Thus,
xe− exe = ex− exe⇒ xe = ex.
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1.1.4 Additional problems
1. Examine if the following sets are rings with respect to the defined binary operations:

(a) R = {a+b
√

2 : a,b ∈Q}, + and · are the usual addition and multiplication in
Q.

(b) R = {(a,b) : a,b ∈ Z}, + and · are defined with

(a,b)+(c,d) = (a+ c,b+d), (a,b) · (c,d) = (ac+bd,ad +bc).

(c) The set of all vectors in the 3-dim Euclidean space with respect to vector
addition and vector multiplication.

2. Prove that the set End(G) of all endomorphisms of the abelian group G is a ring
with respect to addition and multiplication defined by

( f +g)(a) = f (a)+g(a), ( f ·g)(a) = f (g(a)),

for f ,g ∈ End(G).
3. Show that the ring of n×n matrices over some field F is von Neumann regular.
4. If a ring R has a unique left identity 1l , prove that 1l is then the identity (it should

also be the right). Does it hold if we leave out the word “unique”?
5. ∗ Let R be a finite ring of order n > 1, where n is a product of distinct primes. Prove

that R is commutative.
6. Prove that for every prime p there exists a non-commutative ring of order p2.

Hint: Let R = {(x,y) : x,y = 0,1, . . . , p− 1}. Addition is defined with (x1,x2)+
(y1,y2) = (x1+p y1,x2+p y2) and multiplication with (x1,x2) ·(y1,y2) = (x1 ·p (y1+p
y2),x2 ·p (y1 +p y2)). Show that (R,+, ·) is a non-commutative ring of order p2.

7. Let Zn be the ring of integers modulo n (set of equivalence classes of integers modulo
n), whose elements are denoted with 0,1, . . . ,n−1. If m,n > 1 are coprime, prove
that Zmn contains at least two idempotents different from 0 and 1.

8. ∗∗ Let R be a ring in which x3 = x for all x ∈ R. Show that R is commutative.
Hint: Pretty nasty proof (at least the one I have). The hint is that this is a special
case of a certain theorem by N. Jacobson ,.

1.2 Divisors of zero. Integral domains
1.2.1 Theoretical background

Definition 1.2.1 If a,b ∈ R are nonzero elements for which

ab = 0,

we say that a is the left divisor of zero, and b the right divisor of zero. We point out
that 0 ∈ R is not a divisor of zero.

Definition 1.2.2 A commutative ring with unity 1 6= 0 and no divisors of zero is called
an integral domain.

Theorem 1.2.1

• In the ring Zn, the divisors of zero are all the elements which are not coprime with



16 Chapter 1. Rings

n.
• If p is a prime, then Zp has no divisors of zero.
• The cancellation laws hold in the ring R if and only if R has no divisors of zero.
• Every field F is an integral domain.
• Every finite integral domain is a field.

R Let f : A→ B be a homomorphism.
f ENDOMORPHISM⇔ f surjection
f MONOMORPHISM⇔ f injection

f ISOMORPHISM⇔ f bijection
f AUTOMORPHISM⇔ f bijective and B = A

R

1.2.2 Problems
1. Is a divisor of zero a unit in a ring with unity?
2. Find some examples of divisors of zero in the rings Z4,Z6,Z2×2. Are there rings

without zero divisors?
3. Show that in a division ring there are exactly two idempotents.
4. If R is finite a ring with unity 1 6= 0 and with no zero divisors, then R is a division

ring.
5. Let R 6= 0 be a finite ring. Show that R contains a right identity if and only if there

exists a nonzero element in R which is not a divisor of zero.
6. Show that the rings 2Z and 3Z are not isomorphic. Are R and C isomorphic?
7. Let R be a ring with p elements, p prime. Prove that if R contains at least one

nonzero product, then R∼= (Zp,+, ·).
8. Let R be a ring in which xy = ±yx for all x,y ∈ R. Prove that exactly one of the

following statements holds: R is commutative or xy =−yx, for all x,y ∈ R.
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9. Let R be a finite ring such that at least one of its elements is not a divisor of zero.
Prove:

(a) R is a ring with unity.
(b) If b ∈ R does not have a multiplicative inverse, then b is a divisor of zero.

1.2.3 Solutions
1. Let R be a ring with unity 1 6= 0. Suppose that such elements exist. That is, ab = 0

for some 0 6= a,b ∈ R. If a is invertible, we can find an element a−1 ∈ R such that
a−1a = aa−1 = 1. Hence,

a−1a = 1⇒ (a−1a)b = b⇒ a−1(ab) = b⇒ 0 = b 

2. In Z4 = {0,1,2,3} only 2 · 2 = 2 · 2 mod 4 = 0. Thus 2 is both the left and right
divisor of zero. In Z6 = {0,1, . . . ,5} we have 2 ·3 = 2 ·3 mod 6 = 0 and 3 ·4 = 3 ·4
mod 6 = 0. In Z2×2 there are infinitely many divisors of zero. For a,b 6= 0 we have[

a 0
0 0

]
·
[

0 0
b 0

]
=

[
0 0
0 0

]
.

The rings Z,R,C have no divisors of zero.
Comment: There are infinite rings with divisors of zero. For example, let X 6= /0.
The ring B = (2X ,4,∩) is a Boolean ring, ie, A2 = A for all A∈ 2X . If A 6= /0,X , then
A and X \A are divisors of zero. Let R = B×B× . . .×B× . . . be a direct product of
countably many copies of B. R is an infinite ring with zero divisors.

3. The obvious idempotents are 0 and 1. Suppose a 6= 0,1 is an idempotent, ie, a2 = a.
Since we are in a division ring, a−1 exists and multiplying it with both sides we get
a = 1.  

4. We need to show that every a 6= 0 has an inverse a−1 such that aa−1 = a−1a = 1.
Since R is finite, WLOG we can write

R = {0,1,a1, . . . ,an}.

Let a 6= 1 be an arbitrary element in R. Let S = aR, that is,

S = {0,a,aa1, . . . ,aan}.

We claim that all elements in S are pairwise distinct. Since there are no divisors of
zero, the cancellation laws hold. So, if aai = aa j, then ai = a j, which is not possible.
Hence, it has to follow that

S = {0,a,aa1, . . . ,aan}= {0,1,a1, . . . ,an}= R.

In other words, there exists some ai ∈ R such that aai = 1. Similarly, for taking
S = Ra, we obtain that there is some a j such that a ja = 1. If an element has left and
right inverse, they have to be equal. Thus, aai = aia = 1. Since a was arbitrary, the
result follows.

5. ⇒ Let e ∈ R be the right identity in R, that is, ae = a for all a ∈ R. Since R 6= 0
then e 6= 0. If xe = 0 we have that x = 0, thus e is not a right divisor of zero.
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⇐ Suppose R contains an element d 6= 0, which is not a right divisor of zero. Thus,

ad 6= 0, ∀a ∈ R\{0}.

We consider the map f : R→ R defined by f (x) = xd. We claim that f is injective.

f (x) = f (y)⇒ xd = yd
⇒ xd− yd = 0
⇒ (x− y)d = 0
⇒ x− y = 0 (d is not a div. of zero)
⇒ x = y

Since R is finite and f injective, f is surjective. Thus, there exists such x ∈ R for
which f (x) = d. We will show that x is the right identity in R.

f (x) = d⇒ xd = d
⇒ y(xd) = yd, ∀y ∈ R
⇒ (yx)d− yd = 0, ∀y ∈ R
⇒ (yx− y)d = 0, ∀y ∈ R
⇒ yx− y = 0, ∀y ∈ R
⇒ yx = y, ∀y ∈ R

6. If f : 2Z→ 3Z is an isomorphism, from group theory, for the aditive groups (2Z,+)
and (3Z,+) we know that either f (2) = 3 or f (2) =−3. Thus, the possible homo-
morphisms are f (2n) = 3n or f (2n) =−3n.

• f (2n) = 3n. For n = 2 we have f (4) = 6, but f (2) f (2) = 9.
• f (2n) =−3n. For n = 2 we have f (4) =−6, but f (2) f (2) = 9.

Thus, (2Z,+, ·)� (3Z,+, ·).
Assume that f : C→ R is an isomorphism. Ring homomorphisms preserve idem-
potents, therefore we have f (1) = 1. A ring homomorphism must also preserve
additive inverses, therefore f (−1) =−1. Let a = f (i). We then have

a2 = f (i) f (i) = f (i2) = f (−1) =−1,

but we know that there is no a ∈ R such that r2 =−1. Therefore there can’t be an
isomorphism between C and R.

7. Let R be a ring with p elements, p prime. Since every group of prime order is cyclic,
so is (R,+). If a is one of the generators of the group, we have

R = {a,2a,3a, . . . ,(p−1)a, pa = 0}.

Let a2 = ka, 1 ≤ k ≤ p. If k = p, then all products in R are equal to 0, which
contradicts our assumption that there is at least one nonzero product. So, k 6= p. In
other words, gcd(k, p) = 1. From number theory:

(∃l,m ∈ Z) lk+mp = 1.

We claim that f : Zp→ R defined by f (i) = ila is a ring isomorphism.
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(i) injectivity. Let i, j ∈ Zp be arbitrary.

f (i) = f ( j)⇒ ila = jla
⇒ ila− jla = 0
⇒ (i− j)la = 0
(?)⇒ i− j = 0
⇒ i = j

⇒ i = j

(?) : a 6= 0, because a is a generator. l 6= 0, otherwise mp = 1 which is
impossible because p > 1.

(ii) surjectivity. Since R is finite and f is an injection, f is a surjection.
(iii) homomorphism. Let i, j ∈ Zp be arbitrary.

f (i+ j) = f (i+ j) = (i+ j)la = ila+ jla = f (i)+ f ( j)

f (i) f ( j) = (ila)( jla) = (a+a+ . . .+a)︸ ︷︷ ︸
il

(a+a+ . . .+a)︸ ︷︷ ︸
jl

= i jl2a2 = i jl2ka = i jllka

= i jl(1−mp)a = i jla− i jm(pa)︸︷︷︸
=0

= i jla = f (i j)

From (i),(ii),(iii) follows that f is an isomorphism between R and Zp.
8. Let a ∈ R be arbitrary but fixed. We define the sets

Ca = {x ∈ R|xa = ax}
Da = {x ∈ R|xa =−ax}.

We have that R = Ca ∪Da, Ca ∩Da = /0 for all a ∈ R. If R 6= Ca and R 6= Da,
then there exists elements c ∈Ca \Da and d ∈ Da \Ca. Since (R,+) is an abelian
group, we have that c+ d ∈ R. Thus, for a ∈ R we have that (c+ d)a = a(c+ d)
or (c+d) =−a(c+d). If (c+d)a = a(c+d), then ca+da = ac+ad⇒ da = ad
which means that d ∈Ca, contradiction. Similarly we get that c ∈ Da, contradiction.
Thus, R =CaYR = Da. We denote

U = {a ∈ R : Ca = R}
V = {a ∈ R : Da = R}

We see that R =U ∪V . If R 6=U and R 6= V , we can find elements u ∈U \V and
v ∈V \U .

u ∈U \V ⇒Cu = R ∧Cu 6= Du⇒ xu = ux ∧ xu 6=−ux
v ∈V \U ⇒ Dv = R ∧Dv 6=Cv⇒ xv =−vx ∧ xv 6= vx

Since u+ v ∈ R we have that u+ v ∈U or u+ v ∈ V . If u+ v ∈U , then Cu+v = R.
This means that for all x ∈ R, x(u+ v) = (u+ v)x⇒ xu+ xv = ux + vx. Since
ux = xu, it follows that xv = vx, ∀x ∈ R. Thus, Cv = R which would imply that
v ∈U , contradiction. By similar reasoning we would obtain that Du = R, which
would mean that u ∈V , contradiction. Thus, R =U YR =V . In other words, either
R is a commutative ring or xy =−yx, for all x,y ∈ R.
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9. (a) Let a ∈ R be an element which is not a divisor of zero. Then there must exists
positive integers m and n such that am = an, because R is finite. Assume that
m < n. We have that am−1 (a−an−m+1) = 0 and since a is not a divisor of
zero, an−m+1 = a.
Let b ∈ R be arbitrary. Then ba = ban−m+1, which is equivalent with (b−
ban−m)a = 0, so b = ban−m (since a is not a divisor of zero). Analogously, we
obtain b = an−mb. So, an−m is the unity of the ring R.

(b) From (a) we have that every element a, which is not a divisor of zero, has an
inverse a−1 = an−m−1. By contraposition, if b ∈ R does not have an inverse,
then b must be a divisor of zero.

1.2.4 Additional problems

1. Show that Zn has divisors of zero if and only if n is not a prime.
2. Let R be a ring that contains at least two elements. Suppose for each nonzero a ∈ R,

there exists a unique b ∈ R such that aba = a.
(a) Show that R has no divisors of zero.
(b) Show that bab = b.
(c) Show that R has unity.
(d) Show that R is a division ring.

3. Let R be a finite ring that contains an element a, which is not a left divisor of zero,
and an element b, which is not a right divisor of zero. Show that R has unity.
Hint: By defining two really similar bijective mappings from R to R, depending on
a and b of course, and considering some equalities will give you the solution.

4. Let R be a commutative ring with unity and e an idempotent different from 0 and 1.
Show that:

(a) 1− e is an idempotent,
(b) Re and R(1− e) are subrings with unity,
(c) R∼= Re×R(1− e).

5. Prove that in a finite ring in which there exists an element a which is not a left divisor
of zero and an element b which is not a right divisor of zero, is a ring with unity.

6. Let R be a ring of n×n matrices with elements in a field F . Prove that the set of
upper triangular matrices is a subring of R.

7. Prove:
(a) A subring S of a ring with unity R does not have to be a ring with unity.
(b) A subring S of a ring R without unity can contain a unity.
(c) A subring S of a ring R can have a unity which is different than 1R.

8. Let L be a subring of R. If L has a unity and R does not have a unity, then R has
divisors of zero.

9. Prove that if in a ring with unity R for every a,b ∈ R it holds (a+b)2 = a2+b2, then
R is commutative.

10. If a and b are nilpotents of a commutative ring R, prove that a+b is also a nilpotent.
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1.3 Ring characteristic. Euler’s and Fermat’s theorems. Euler’s
function

1.3.1 Theoretical background
Definition 1.3.1 If for a ring R a positive integer n exists such that n ·a = 0 for all a ∈ R,
then the least such positive integer is the characteristic of the ring R. If no such n
exists, we say that R has characteristic 0. We denote it with char(R).

Theorem 1.3.1 — Fermat’s little theorem. For every integer a and every prime p such
that p - a, it holds that

ap−1 ≡ 1 (mod p).

Corollary 1.3.2 For every integer a and prime p, it holds that

ap ≡ a (mod p).

Definition 1.3.2 Euler’s function ϕ : N→ N is a multiplicative arithmetic function of
an arbitrary positive integer n, which counts the positive integers d that are relatively
prime to n and d < n. In other words:

ϕ(n) = |{d ∈ N : gcd(d,n) = 1, 1≤ d < n}|.

Theorem 1.3.3 — Euler. For every integer a and positive integer n coprime with a, it
holds that

aϕ(n) ≡ 1 (mod n).

1.3.2 Problems
1. Find the remainder of 3749 when divided by 7.
2. Describe all solutions of the given congruences:

(a) 2x≡ 6 (mod 4)
(b) 155x≡ 75 (mod 65)
(c) 39x≡ 52 (mod 130)

3. Find the remainder of 2217
+1 when dividing by 19.

4. Prove that for every n ∈ N it holds that n33 ≡ n(mod 15).
5. Compute ϕ(p1 p2 . . . pr), where p1, . . . , pr are pairwise distinct primes.
6. Compute ϕ(pn), where p is a prime.
7. Compute ϕ(n) for an arbitrary positive integer n. Using the obtained formula and

Euler’s theorem, find the last two digits of 194322.
8. Prove that the characteristic of an integral domain D is either 0 or p, where p is a

prime.
9. Let R be a commutative ring with identity and let char(R) = 3. Compute and simplify

(a+b)9, a,b ∈ R.
10. Prove that 1 and p−1 are the only elements of Zp that are their own inverses.
11. Let D be an integral domain which contains an element 0 6= a ∈ D and there exists

an n ∈ N such that na = 0. Show that the characteristic of D is a positive integer d,
which is a divisor of n.
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12. Let R be a ring and n a positive integer for which xn = x, for all x ∈ R. Prove: if n
is odd, then char(R) equals the product of distinct prime numbers, and if n is even,
then char(R) = 2.

13. Let (R,+, ·) be a ring in which every element is an idempotent. Show that char(R) =
2 and R is commutative.

1.3.3 Solutions
1. Since gcd(37,7) = 1, by Fermat’s little theorem we have that 376 ≡ 1 (mod 7). We

use standard mathematical operations like exponenting and multiplying, to obtain
3749. (Similarly as if you would be working with “standard” equations).

376 ≡ 1 (mod 7)
∣∣∣8

3748 ≡ 1 (mod 7)
∣∣∣ ·37

3749 ≡ 37 (mod 7)

3749 ≡ 2 (mod 7)

2. If a,n∈N and b∈Z, the congruence ax≡ b (mod n) has a solution iff d|b, where d =
gcd(a,n). If this condition is satisfied, the congruence has exactly d noncongruent
solutions modulo n of the form

x0 +
n
d

t, t = 0,1, . . . ,d−1,

where x0 is the unique solution of the congruence

a
d

x≡ b
d
(mod

m
d
).

If d - b, the congrence has no solution.
(a) Since gcd(2,4) = 2 and 2|6, the congruence has exactly two solutions. We

will consider the congruence x ≡ 3 (mod 2). From here, it is easy to see
that x0 = 3 which means that the seeked solutions are x ≡ 3 (mod 4) and
x≡ 5 (mod 4)≡ 1 (mod 4).

(b) To find gcd(155,65) we will use Euklid’s algorithm.

155 = 2 ·65+25
65 = 2 ·25+15
25 = 1 ·15+10
15 = 1 ·10+5
10 = 2 ·5

Since gcd(155,65) = 5 and 5|75, the congruence has exactly 5 solutions. We
will consider the congruence 31x≡ 15 (mod 13). Now, in the previous case it
was super easy to see what x0 was since we had only x on the left side of the
congruence. Solving this would add more work for us, that’s why we will work
out what x0 is from the Euclidean algorithm above (and this method always
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works and is super easy, we just have to be careful with calculations). What we
want to do is go in the reverse order to see for which integers x,y ∈ Z we have
5 = 155x+65y.

5 = 15−10
= 15− (25−15)
= 2 ·15−25
= 2 · (65−2 ·25)−25
= 2 ·65−5 ·25
= 65−5 · (155−2 ·65)
= 12 ·65+(−5) ·155

So we have, 155 · (−5)+ 65 · 12 = 5. Multiplying this equality with 15 we
get 155 · (−75)+65 ·180 = 75, or in other words, 155 · (−75)≡ 75 (mod 65).
So, x0 ≡ −75 (mod 65) ≡ −10 (mod 65) ≡ 55 (mod 65). One solution is
x≡ 55 (mod 65). For t = 1, . . . ,4 we work out that the remaining noncongruent
solutions modulo 65 are x≡ 3,16,29,42 (mod 65).

(c) Since gcd(39,130) = 13 and 13|52, there are exactly 13 solutions to the given
congruence. We consider 3x ≡ 4 (mod 10), It is easy to see that x0 = 8.
Thus the solutions of the given congruence are x≡ 8+10t (mod 130), where
t = 0,1, . . . ,12.

3. Since gcd(2,19) = 1, by Fermat’s little theorem we have that 218 ≡ 1 (mod 19). Let
us consider what 217 mod 18 equals to.

217 = 24 ·24 ·24 ·24 ·2≡ (−2)·(−2)·(−2)·(−2)·2 (mod 18)≡ 32 (mod 18)≡ 14 (mod 18)

In other words, there exists some q ∈ Z such that 217 = 18q+14. Hence,

2217
= 218q+14 = (218)q ·214 ≡ 1q ·214 (mod 19).

It remains to show what 214 mod 19 equals to:

214 =(24)3 ·22≡ (−3)3 ·4 (mod 19)≡−108 (mod 19)≡−13 (mod 19)≡ 6 (mod 19).

Thus,
2217
≡ 6 (mod 19)⇒ 2217

+1≡ 7 (mod 19).

4. Since 15 = 3 ·5, it suffices to show that n33 ≡ n (mod 3) and n33 ≡ n (mod 5).
If 3|n, then 3|n(n32−1)⇒ 3|(n33−n), or in other words n33 ≡ n (mod 3). If 3 - n,
from Fermat’s little theorem, we have that

n2 ≡ 1 (mod 3)
∣∣∣16
⇒ n32 ≡ 1 (mod 3)

⇒ n33 ≡ n (mod 3)

Thus, for all n ∈ N, it holds that n33 ≡ n (mod 3). One shows similarly that n33 ≡
n (mod 5), for all n ∈ N.
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5. Let m and n be two coprime integers. Let us consider the rings Zmn and Zm×Zn.
In our case, we know that Zmn ∼= Zm×Zn. Since both rings are finite, the number
of units in Zm×Zn equals the number of units in Zm times the number of units in
Zn. The number of units in Zn equals ϕ(n). Thus, because of the isomorphism,
the number of units in Zmn is ϕ(mn) and that equals ϕ(m)ϕ(n). Using the fact that
p1, . . . , pr are all pairwise coprime and ϕ(pi) = pi−1, we conclude that

ϕ(p1 p2 . . . pr) = (p1−1)(p2−1) . . .(pr−1).

6. All positive integers less than pn that are not divisible by p are relatively prime to p.
Thus, we delete from pn−1 integers less that pn, the integers p,2p, . . . ,(pn−1−1)p.
Hence,

ϕ(pn) = pn−1− (pn−1−1) = pn− pn−1 = pn−1(p−1).

7. Let n = pk1
1 pk2

2 . . . pkr
r be the prime factorisation of n. For every 1≤ i, j ≤ r, i 6= j,

we have that gcd(pki
i , pk j

j ) = 1. Following the observations from the previous two
problems we obtain that

ϕ(n) = ϕ(pk1
1 pk2

2 . . . pkr
r ) = ϕ(pk1

1 )ϕ(pk2
2 ) . . .ϕ(pkr

r )

= pk1−1
1 (p1−1)pk2−1

2 (p2−1) . . . pkr−1
r (pr−1)

If we take the factor pi from (pi−1), we obtain that

ϕ(n) = n ·
r

∏
i=1

(
1− 1

pi

)
.

Since gcd(19,100) = 1 and, by the above formula, ϕ(100) = 40, from Euler’s
theorem we have that 1940 ≡ 1 (mod 100). Exponentiating this by 108 we have
194320 ≡ 1 (mod 100). Since 192 = 361≡ 61 (mod 100), we conclude that 194322 ≡
61 (mod 100). In other words, the last two digits of 194322 are 61.

8. Let D be an integral domain with unity 1. We will consider two cases, based on the
additive order of 1:

(a) ord(1) is infinite. In this case, there cannot exist a positive integer n ∈ N such
that n ·1 = 0. Thus, char(D) = 0.

(b) ord(1) = n. Suppose that n = kl for some 1 < k, l < n. From

0 = n ·1 = (kl) ·1 = (k ·1)(l ·1)

and since D has no divisors of zero, we must have that k · 1 = 0 or l · 1 = 0,
which is a contradiction with n being the smallest integer for which n ·1 = 0.
Thus, n must be a prime. Furthermore, if a ∈ D is arbitrary, we have that
na = (n ·1) ·a = 0a = 0, that is char(D) = n.

9. Since R is commutative, the binomial theorem holds. That is, for any two a,b ∈ R
and n ∈ N we have

(a+b)n =
n

∑
k=0

(
n
k

)
an−kbk.

For n = 9, we have

(a+b)9 = a9 +
8

∑
k=1

(
9
k

)
a9−kbk +b9.
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Since char(R) = 3 and 3|
(9

k

)
for 1 ≤ k ≤ 8, we have that the middle sum above

equals zero. In other words, (a+b)9 = a9 +b9.
10. If a∈Zp is its own inverse, then a ·a= a2 = 1. In other words a2−1=(a−1)(a+1).

Since Zp has no divisors of zero, either a− 1 = 0 mod p or a+ 1 = 0 mod p.
Hence, a = 1 or a =−1 mod p = p−1.

11. Let char(D) = d, where d ≤ n. Since

0 = na = (n ·1) · a︸︷︷︸
6=0

⇒ n ·1 = 0, ∀n.

If we take an arbitrary x ∈ D, then nx = n · 1 · x = 0. Let us suppose that d - n. In
other words, there exists k, l ∈Z such that n = kd+ l, l < d. Multiplying his equality
with x we obtain

0 = nx = kdx︸︷︷︸
=0

+lx⇒ lx = 0,

which is a contradiction because l < d.
12. Let k ∈ N and x ∈ R, then kx ∈ R. Thus,

(kx)n = kx
⇔knxn = kx
⇔knx = kx
⇔(kn− k)x = 0

Firstly we will prove the following.
Claim: If char(R) = c > 0 and dx = 0 for all x ∈ R, then c|d.
Proof. Suppose that c - d. By the Quotient remainder theorem, there exist l,k ∈ Z+

such that d = kc+ l and l < c. If we multiply this equality by x ∈ R we obtain

0 = dx = k(cx)+ lx = 0+ lx = lx,

however this is a contradiction because char(R) = c > l. Thus, it must hold that
c|d. �
Hence, in our case, it must hold that char(R)|(kn− k) for every k ∈ N. Without loss
of generality, assume that char(R) = p2, for some odd prime prime p. We have that

p2|(kn− k), ∀k ∈ N⇒ p2|(pn− p)⇒ p2|p(pn−1−1)⇒ p|pn−1−1,

but this is not true. In other words, p equals the product of distinct primes. If x ∈ R
then −x ∈ R. Let n = 2k, then:

−x = (−x)n = (−x)2k = [(−x)2]k = [x2]k = x2k = x.

Thus, it must follow that x=−x, in other words 2x= 0, which implies that char(R)=
2.

13. Let x ∈ R be arbitrary. Since every element is an idempotent, this means that also
x+ x is an idempotent, thus

(x+ x)2 = x+ x⇔ x2 + x2 + x2 + x2 = x+ x⇒ x+ x+ x+ x = x+ x⇒ 2x = 0.
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Since x was arbitrary, it follows that char(R) = 2. Let x,y ∈ R be arbitrary and
distinct. We have:

(x+y)2 = x+y⇒ x2+xy+yx+y2 = x+y⇒ x+xy+yx+y = x+y⇒ xy+yx = 0

Since xy ∈ R, we have that 2xy = 0 Hence, xy+ yx = 2xy⇒ yx = xy.

1.3.4 Additional problems
1. Show that there do not exist positive integers m and n such that ϕ(n) = 2 ·75m+4.
2. Find the smallest positive integer which has exactly 10 positive divisors.
3. If gcd(a,55) = gcd(b,55) = 1, prove that a20−b20 is divisible by 55.
4. Find, if it exists, a prime p such that:

(a) p2|11p2
+1.

(b) p2|31p2
+1.

1.4 Fraction fields. Rings of polynomials
1.4.1 Theoretical background

Every field is also an integral domain; however, there are many integral domains that are
not fields. A question that naturally arises is how we might associate an integral domain
with a field. There is a natural way to construct the rationals Q from the integers: the
rationals can be represented as formal quotients of two integers. The rational numbers are
certainly a field. In fact, it can be shown that the rationals are the smallest field that contains
the integers. Given an integral domain D, our question now becomes how to construct
a smallest field F containing D. We will do this in the same way as we constructed the
rationals from the integers.

An element p/q ∈Q is the quotient of two integers p and q. However, different pairs
of integers can represent the same rational number. For instance, 1/2 = 2/4 = 3/6. We
know that a

c
=

c
d
⇔ ad = bc.

A more formal way of considering this problem is to examine fractions in terms of
equivalence relations. We can think of elements in Q as ordered pairs in Z×Z. The
fraction p/q can be written as (p,q). However, there are problems if we consider all
possible pairs in Z×Z. There is no fraction 5/0 corresponding to (5,0). Also, the pairs
(3,6) and (2,4) both represent 1/2. The first problem is easily solved if we require the
second coordinate to be nonzero. The second problem is solved by considering two pairs
(a,b) and (c,d) to be equivalent if ad = bc.

If we use the approach of ordered pairs instead of fractions, then we can study integral
domains in general. Let D be any integral domain and let

S = {(a,b) : a,b ∈ D,b 6= 0}.

Define a relation on S by (a,b)∼ (c,d)⇔ ad = bc.
Lemma 1.1 The relation ∼ between elements of S is an equivalence relation.

Proof. The proof is left to the reader. �



1.4 Fraction fields. Rings of polynomials 27

We will denote the set of equivalence classes on S by FD. We now need to define the
operations of addition and multiplication on FD. If we denote the equivalence class of
(a,b) ∈ S with [(a,b)], then we are led to define the operations of addition and multiplica-
tion on FD by

[(a,b)]+ [(c,d)] = [(ad +bc,bd)] and [(a,b)] · [(c,d)] = [(ac,bd)], (1.1)

respectively. The next lemma demonstrates that these operations are independent of the
choice of representatives from each equivalence class.
Lemma 1.2 The operations of addition and multiplication on FD are well-defined.

Proof. The proof is left to the reader. �

Lemma 1.3 The set of equivalence classes of S, FD, under the equivalence relation ∼
together with the operations of addition and multiplication defined by (1.1) is a field.

Proof. 1. (FD,+) is a commutative group.
• associativity. Holds because of the associativity of the operation + in D.
• additive identity (zero). The additive identity in FD is [(0,1)], because for every
[(a,b)] ∈ FD it holds

[(0,1)]+ [(a,b)] = [(0 ·b+1 ·a,1 ·b)] = [(a,b)]
[(a,b)]+ [(0,1)] = [(a ·1+b ·0,b ·1)] = [(a,b)]

• additive inverse. For every element [(a,b)] ∈ FD there exists a unique element
[(−a,b)] ∈ FD such that

[(a,b)]+ [(−a,b)] = [(a ·b+b · (−a),b ·b)] = [(0,b2)]

[(−a,b)]+ [(a,b)] = [(−a ·b+b ·a,b ·b)] = [(0,b2)]

Because (0,b2)∼ (0,1)⇔ 0 ·1= b2 ·0⇔ 0= 0, it holds that [(0,b2)] = [(0,1)].
• commutativity. For every [(a,b)], [(c,d)] ∈ FD, it holds that

[(a,b)]+ [(c,d)] = [(ad +bc,bd)] = [(cb+da,db)] = [(c,d)]+ [(a,b)],

where we used the fact that D is commutative.
Hence, (FD,+) is an abelian group.

2. associativity of multiplication. It holds because multiplication is associative in D.
3. unity in FD. There exists an element [(1,1)] ∈ FD such that for every [(a,b)] ∈ FD it

holds that
[(a,b)] · [(1,1)] = [(1,1)] · [(a,b)] = [(a,b)].

4. multiplicative inverse. For every element [(a,b)] ∈ FD \ {[(0,1)]} there exists an
element [(b,a)] ∈ FD such that

[(a,b)] · [(b,a)] = [(b,a)] · [(a,b)] = [(ab,ab)].

Since [(a,b)] 6= [(0,1)] it must hold that a,b 6= 0 and furthermore, since D has no
divisors of zero, it holds that ab 6= 0. We note that [(1,1)] = {(a,a) : a ∈ D,a 6= 0}.
Thus, it holds that [(ab,ab)] = [(1,1)].
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5. commutativity. Holds because D is commutative.
6. distributivity. Let [(a,b)], [(c,d)], [(e, f )] ∈ FD be arbitrary.

[(a,b)] · ([(c,d)]+ [(e, f )]) = [(a,b)] · [(c f +de,d f )] = [(a(c f +de),bd f )]
[(a,b)] · [(c,d)]+ [(a,b)] · [(e, f )] = [(ac,bd)]+ [(ae,b f )]

= [(acb f +bdae,bdb f )]
= [ba(c f +de),b(bd f )]

Since (x,y) ∼ (αx,αy) for α 6= 0, we have that [(ba(c f +de),b(bd f )] = [(a(c f +
de),bd f )]. Thus, we conclude that

[(a,b)] · ([(c,d)]+ [(e, f )]) = [(a,b)] · [(c,d)]+ [(a,b)] · [(e, f )].

In a similar manner one can show that the other distributive law holds as well.
Thus, (FD,+, ·) is a field. �

Definition 1.4.1 The field FD is called the field of fractions of the integral domain D.

Lemma 1.4 The map i : D→ FD s defined with i(a) = [(a,1)] is an isomorphism of D
with a subring of FD.

Proof. The proof is left to the reader. �

Since [(a,b)] = [(a,1)][(1,b)] = [(a,1)] · [(b,1)]−1 = i(a) · i(b)−1 = i(a)/i(b) clearly
holds in FD, we have proved the following theorem.

Theorem 1.4.1 Any integral domain D can be enlarged to a field FD such that every
element in FD can be expressed as a quotient of two elements of D.

Corollary 1.4.2 Let F be a field of characteristic zero. Then F contains a subfield
isomorphic to Q.

Corollary 1.4.3 Let F be a field of characteristic p. Then F contains a subfield
isomorphic to Zp.

FD can be in some sense regarded as a minimal field containing D. The following
theorem shows that every field containing D contains a subfield which is a field of quotients
of D, and that any two fields of quotients of D are isomorphic.

Theorem 1.4.4 Let F be a field of quotients of D and let L be any field containing D.
Then there exists an isomorphism ψ : F → L that gives an isomorphism of F with a
subfield of L such that ψ(a) = a for a ∈ D.

Proof. An element F is of the form a/Fb where /F denotes the quotient of a ∈D by b ∈D
regarded as elements of F . We want to map a/Fb to a/Lb where /L denotes the quotients
in L. We define ψ : F → L with ψ(a/Fb) = ψ(a)/Lψ(b), where ψ(x) = x for all x ∈ D.
Let us show that this mapping is well-defined.
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a/Fb = c/Fd in F ⇒ad = bc in D
⇒ψ(ad) = ψ(bc)
⇒ψ(a)ψ(d) = ψ(b)ψ(c)
⇒ψ(a)/Lψ(b) = ψ(c)/Lψ(d)

Thus ψ is well-defined. Furthermore,

ψ(xy) = ψ((a/Fb)(c/Fd)) = ψ((ac)/F(bd)) = (ψ(a)ψ(c))/L(ψ(b)ψ(d))
= (ψ(a)/Lψ(b))(ψ(c)/Lψ(d)) = ψ(x)ψ(y)

ψ(x+ y) = ψ((a/Fb)+(c/Fd)) = ψ((ad +bc)/F(bd)) = ψ(ad +bc)/Lψ(bd)
= (ψ(a)ψ(d)+ψ(b)ψ(c))/L(ψ(b)ψ(d)) = (ψ(a)/Lψ(b))+(ψ(c)/Lψ(d))
= ψ(a/Fb)+ψ(c/Fd) = ψ(x)+ψ(y),

that is, ψ is a homomorphism. Since,

ψ(a/Fb) = ψ(c/Fd)⇒ ψ(a)/Lψ(b) = ψ(c)/Fψ(d)
⇒ ψ(a)ψ(d) = ψ(b)ψ(c)
⇒ ad = bc
⇒ a/Fb = c/Fd,

ψ is one-to-one. �

Corollary 1.4.5 Every field L containing an integral domain D contains a field of
quotients of D.

Corollary 1.4.6 Any two fields of quotients of an integral domain D are isomorphic.

Definition 1.4.2 Let R be a ring. A polynomial f (x) with coefficients in R is an infinite
formal sum ∑

∞
i=1 aixi where ai ∈ R and ai = 0 for all but finitely many values of i. The

ai are coefficients of f (x). If for some i≥ 0 it is true that ai 6= 0, the largest such value
of i is the degree of f (x).

Theorem 1.4.7 The set R[x] of all polynomials in indeterminate x with coefficients in a
ring R is a ring under polynomial addition and multiplication defined as follows.

Let f (x) = ∑
∞
i=0 aixi and g(x) = ∑

∞
i=0 bixi. Then

f (x)+g(x) =
∞

∑
i=0

cixi, ci = ai +bi,

and

f (x)g(x) =
∞

∑
i=0

dixi, di =
i

∑
j=0

a jbi− j.
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If R is commutative, then so is R[x]. If R is a ring with unity 1 6= 0, then 1 is also the
unity of R[x].

Theorem 1.4.8 — The Evaluation Homomorphism for Field Theory. Let F be a
subfield of a field E, let α be any element of E, and let x be an indeterminate. The map
φα : F [x]→ E defined by

φα(a0 +a1x+ . . .+anxn) = a0 +a1α + . . .+anα
n

for ∑
n
i=1 aixi ∈ F [x] is a homomorphism of F [x] into E. Also, φα(x) = α and φα maps F

isomorphically by the identity map, that is, φα(a) = a, for a ∈ F . The homomorphism
φα is the evaluation at α .

Definition 1.4.3 — zero of polynomial . Let F be a subfield of a field E, and let α be
an element of E. Let f (x) = ∑

n
i=1 aixi be in F [x] and let φα : F [x]→ E be the evaluation

homomorphism. Let f (α) denote

φα( f (x)) = a0 +a1α + . . .+anα
n.

If f (α) = 0, then α is a zero of f (x).

1.4.2 Problems
1. Find the product of f (x) = 2x2 +3x+4 and g(x) = 3x2 +2x+3 in Z6[x].
2. How many polynomials of degree m are there in Zn[x]?
3. If F = E = Z7, compute the indicated evaluation homomorphism:

(a) φ3(((x4 +2x)(x3−3x2 +3))
(b) φ4(3x106 +5x99 +2x53)

4. Use Fermat’s theorem to find all zeroes in Z5 of 2x219 +3x74 +2x57 +3x44.
5. Consider the evaluation homomorphism φ5 : Q[x]→ R. Find six elements in the

kernel of φ5.
6. Let D be an integral domain. Show that then D[x] is also an integral domain.
7. Let D be an integral domain and f ,g ∈ D[x]. Prove that deg( f g) = deg( f )+deg(g).

Does the statement hold if D contains divisors of zero?
8. What are the units in the integral domain D[x]?

1.4.3 Solutions
1. Always keep in mind that you are doing addition and multiplication modulo 6. Then,

it is easy to compute that f (x) ·g(x) = x3 +5x.
2. Let f (x) = a0 +a1x+ . . .+am−1xm−1 +amxm be an arbitrary polynomial of degree

m in Zn[x]. Since we need to have the leading coefficient am always present, we
know that am ∈ {1,2, . . . ,n−1} and for the other ai we can take any element of Zn.
Thus in total there are nm · (n−1) polynomials of degree m in Zn[x].

3. (a) First, we note that f (x) = (x4 +2x)(x3−3x2 +3) = x7 +4x6 +5x4 + x3 +6x.
Thus,

φ3( f (x)) = f (3) = 37 +4 ·36 +5 ·34 +33 +6 ·3.
Using Fermat’s little theorem and its corollary, we have that 37 mod 7 = 3
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and 36 mod 7 = 1. Furthermore, it is easy to compute that 34 mod 7 = 4 and
33 mod 7 = 6. Hence,

φ3( f (x)) = 3+4+5 ·4+6+4 = 2.

(b) From Fermat’s little theorem, we know that 46 ≡ 1 (mod 7). Now we try
to “pack” 46 to get as close as we can to 4106. In our case, (46)17 = 4102 ≡
1 (mod 7). On the other hand, 44 ≡ 4 (mod 7). By multiplying these two
congruences, we obtain that 4106 ≡ 4 (mod 7). In a similar manner we compute
that, 499 ≡ 1 (mod 7) and 453 ≡ 2 (mod 7). Hence,

φ4(3x106 +5x99 +2x53) = 3 ·4+5 ·1+2 ·2 = 0.

4. From Fermat’s little theorem, we know that a4 ≡ 1 (mod 5) for a ∈ {1,2,3,4}. In
the expression of f (x), let us write the exponents d of x as d = 4q+ l, l < d. We
obtain

f (x) = 2 · (x4)54 · x3 +3 · (x4)18 · x2 +2 · (x4)14 · x+3 · (x4)11.

Now, it is easy to compute the values of f (x) for x ∈ Z5.

f (0) = 0
f (1) = 2+3+2+3 = 0
f (2) = 1+2+4+3 = 0
f (3) = f (−2) = 4+2+1+3 = 0
f (4) = f (−1) = 3+3+3+3 = 2

Thus, the zeros of f (x) are 0,1,2 and 3.
5. Obviously, f1(x) = x−5 ∈ ker(φ5). Any multiple of f1 will also be in ker(φ5).
6. From Theorem 1.4.7 we know that D[x] is a commutative ring with unity 1 6= 0. It

remains to check if D[x] has zero divisors.
Let f ,g ∈ D[x] be two arbitrary nonzero polynomials. Without loss of generality, we
may write

f (x) =
n

∑
i=0

aixi, g(x) =
m

∑
i=0

bixi, ai,b j ∈ D, i = 0,n, j = 0,m.

Since D is an integral domain, it follows that anbm 6= 0, thus

anbmxn+m 6= 0⇒ f (x)g(x) 6= 0.

In other words, D[x] has no zero divisors.
7. Let

f (x) =
n

∑
i=0

aixi, g(x) =
m

∑
i=0

bixi, ai,b j ∈ D, i = 0,n, j = 0,m

be two arbitrary nonzero polynomials in D[x]. The “highest” monomial that appears
in f (x)g(x) is xn+m with the coefficient anbm. However, since D is an integral
domain, we know that anbm 6= 0. Thus

deg( f g) = n+m = deg( f )+deg(g).
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Let us consider the ring Z6[x]. If we take f (x) = 2x2 and g(x) = 3x3 + 2, then
f (x)g(x) = 4x2. Hence,

deg( f g) = 2 6= 5 = deg( f )+deg(g).

8. Suppose that f (x) ∈ D[x] is invertible. That is,

(∃g(x) ∈ D[x]) f (x)g(x) = 1.

From this, it follows that deg( f g) = deg(1) = 0. Without loss of generality, assume
that deg( f ) = n, deg(g) = m, n,m≥ 0. Since D[x] is an integral domain, we have
that deg( f g) = n+m = 0, which implies that n = m = 0. In other words, f and g are
constant polynomials, i.e., the invertible elements in D[x] are exactly those elements
that are invertible in D.

1.4.4 Additional problems
1. If F is a field, what is Frac(F), the field of fractions of F? Prove your statement.
2. Find the units in Z[x] and Z7[x].
3. Let F be a field of characteristic 0 and let D be the formal polynomial differentiation

map, so that

D

(
n

∑
i=0

aixi

)
=

n

∑
i=1

iaixi−1.

(a) Show that D : F [x]→ F [x] us a group automorphism of (F [x],+). Is D a ring
homomorphism?

(b) Find ker(D).
(c) Find im(D).

4. Let F be a subfield of E.
(a) Define an evaluation homomorphism φα1,...,αn : F [x1, . . . ,xn]→ E, αi ∈ E,

stating the analog of Theorem 1.4.8.
(b) With F = E =Q, compute φ−3,2(x2

1x3
2 +3x4

1x2).
(c) Define the concept of a zero of a polynomial f (x1, . . . ,xn) ∈ F [x1, . . . ,xn] in a

way analogous to the definition of a zero of f (x).
5. Let F be a field and FF the set of all functions from F → F . For φ ,ψ ∈ FF we

define addition φ +ψ with

(φ +ψ)(a) = φ(a)+ψ(a)

and multiplication φ ·ψ with

(φ ·ψ)(a) = φ(a) ·ψ(a)

where a ∈ F .
(a) Show that (FF ,+, ·) is a ring.

An element φ ∈ FF is a polynomial if there exists f (x)∈ F [x], such that φ(a) = f (a)
for all a ∈ F .
(b) Show that the set PF of all polynomials over F is a subring of FF .
(c) Show that PF is not necessarily isomorphic to F [x]. (Hint: Show that if F is

finite, F [x] and FF do not have the same cardinality).
(d) Show that F = ZZ2

2 implies PF = FF .
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1.5 Factorisation of polynomials over a field

1.5.1 Theoretical background

Theorem 1.5.1 — Division algorithm. Let f (x) = ∑
n
i=0 aixi and g(x) = ∑

m
i=0 bixi be two

elements of F [x], with an,bm 6= 0 and m > 0. Then there are unique polynomials q(x)
and r(x) in F [x] such that f (x) = g(x)q(x)+ r(x), where either r(x) = 0 or the degree of
r(x) is less than the degree m of g(x).

Corollary 1.5.2 — Factor Theorem. An element a ∈ F is a zero of f (x) ∈ F [x] if and
only if x−a is a factor of f (x) in F [x].

Definition 1.5.1 A nonconstant polynomial f (x) ∈ F [x] is irreducible over F or is an
irreducible polynomial in F [x] if f (x) cannot be expressed as a product g(x)h(x) of
two polynomials f (x),h(x) ∈ F [x] both of lower degree than deg( f ). If a polynomial is
not irreducible over F , we say that it is reducible over F .

Theorem 1.5.3 Let f (x) ∈ F [x] and let deg( f ) = 2 or 3. Then f (x) is reducible over F
if and only if it has a zero in F .

Theorem 1.5.4 If f (x) ∈ Z[x], then f (x) factors into a product of two polynomials of
lower degrees r and s in Q[x] if and only if it has such a factorisation with polynomials
of the same degrees r and s in Z[x].

Theorem 1.5.5 — Eisenstein Criterion. Let p ∈ Z be a prime. Suppose that f (x) =
anxn + . . .+ a0 is in Z[x], and p - an but p | ai for all i < n, with p2 - a0. Then f (x) is
irreducible over Q.

Theorem 1.5.6 Let p(x) be an irreducible polynomial in F [x]. If p(x) divides r(x)s(x)
for r(x),s(x) ∈ F [x], then either p(x) divides r(x) or p(x) divides s(x).

Corollary 1.5.7 If p(x) is irreducible in F [x] and p(x) divides the product r1(x) . . .rn(x)
for ri(x) ∈ F [x], then p(x) divides ri(x) for at least one i.

1.5.2 Problems
1. Find q(x) and r(x) as described by the division algorithm so that f (x) = g(x)q(x)+

r(x) with deg(r)< deg(g), if f (x) = x5−2x4 +3x−5 and g(x) = 2x+1 in Z11[x].
2. The polynomial f (x) = 2x3+3x2−7x−5 can be written as a product of linear terms

in Z11[x]. Find that factorisation.
3. Is x3 +2x+3 an irreducible polynomial of Z5[x]? Why? Express it as a product of

irreducible polynomials of Z5[x].
4. How many irreducible polynomials of degree 2 are there in Zp[x]?
5. Show that xp +a is reducible in Zp[x] for all a ∈ Zp, where p is a prime number.
6. Show that f (x) = x2+8x−2 is irreducible overQ. Is f (x) irreducible over R? Over
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C?
7. Demonstrate that x3 +3x2−8 is irreducible over Q.
8. If a polynomial p(x) is irreducible over a field F , the the polynomial p(x+a), with

a ∈ F , is also irreducible over F .
9. Let F be a field. For a polynomial f (x) = a0 +a1x+ . . .+anxn ∈ F [x] we define its

derivative f ′(x) with

f ′(x) =
n

∑
i=0

iaixi−1.

(a) Show that the mapping D : F [x]→ F [x] defined with D( f (x)) = f ′(x) is a linear
mapping between vector spaces.

(b) Find ker(D).
(c) Prove that D satisfies Leibniz’s rule: D( f (x)g(x))=D( f (x))g(x)+ f (x)D(g(x)),

for all f (x),g(x) ∈ F [x].

1.5.3 Solutions
1. q(x) = 6x4 +7x3 +2x2 +10x+2, r(x) = 4

6x4 +7x3 +2x2 +10x+2
2x+1

)
x5−2x4 +0x3 +0x2 + 3x−5
x5 +6x4 ↓

3x4 +0x3

3x4 +7x3 ↓
4x3 +0x2

4x3 +2x2 ↓
9x2 + 3x
9x2 +10x ↓

4x+6
4x+2

4

2. x = 3 is a zero of f (x). Thus, x− 3 is one linear term in the factorisation. Let us
divide the given polynomial with x−3.

2x2 +9x+9
x−3

)
2x3 +3x2−7x−5
2x3 +5x2 ↓

9x2 +4x
9x2 +6x ↓

9x+6
9x+6

0
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Thus f (x) = (x−3)(2x2 +9x+9). Since x = 4 is a zero of the latter, let us divide
2x2 +9x+9 with x−4.

2x+6
x−4

)
2x2 +9x+9
2x2 +3x ↓

6x+9
6x+9

0

Hence, f (x) = (x−3)(x−4)(2x+6).
3. No, since x = 3 is a zero of f (x) and deg( f ) = 3, from Theorem 1.5.3, it follows

that f (x) is reducible.

x2 +4x+3
x−4

)
x3 +0x2 +2x+3
x3 + x2 ↓

4x2 +2x
4x2 +4x ↓

3x+3
3x+3

0

By inspection, 2 and 4 are zeros of x2+4x+3 and thus f (x) = (x−2)(x−4)(x+4).
4. Without loss of generality, any quadratic polynomial can be written in the form

a(x2 + px+q), where a, p,q ∈ Zp and a 6= 0. Since we are interested in the zeros,
we will consider x2 + px+q. Suppose that

x2 + px+d = (x− c)(x−d).

If c 6= d, then there are
(p

2

)
choices for c and d, and if c = d, then there are p choices.

In total, there are p+
(p

2

)
= p(p+1)

2 reducible polynomials of degree 2 in Zp. From
Problem 2 in Section 1.4.2, we have that there are p2(p−1) quadratic polynomials
in Zp[x]. Hence, the number of irreducible quadratic polynomials in Zp[x] equals

p2(p−1)− p(p+1)
2

=
p2− p2− p2− p

2
=

p3− p2− p
2

=
p(p−1)2

2
.

5. If p = 2, then the two possible polynomials are x2 = x · x and x2 + 1 = x2 + 12 =
(x+1)2, which are both reducible. Assume that p 6= 2, then p is odd. For a ∈ Zp we
have that −a ∈ Zp. From

(−a)p +a =−ap +a =−a+a = 0,

it follows that −a is a zero of xp +a, i.e., xp +a is reducible.
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6. For p = 2, we have that p|8, p|2, p - 1 and p2 - 2. Thus, following Eisenstein’s
Criterion, we have that f (x) is irreducible over Q. Since,

D = b2−4ac = 64+8 = 72 > 0

it follows that f (x) has a root in R[x], that is, f (x) is reducible over R. Since R⊂ C,
f (x) is also reducible over C.

7. If x3 + 3x2− 8 is reducible over Q, then by Theorem 1.5.4, it factors in Z[x], and
must therefore have a linear factor of the form x−a in Z[x]. Then a must be a zero
of the polynomial and must divide −8, so the possibilities are a =±1,±2,±4,±8.
Computing the polynomial at these eight values, we find that none of them is a zero
of the polynomial, which is therefore irreducible over Q.

8. Suppose that p(x+a) is reducible over F , that is

p(x+a) = q(x)s(x),

where q(x) and s(x) are polynomials of positive degree. If we substitute x↔ x−a
in the upper equation, then

p(x) = q(x−a)s(x−a),

where q(x−a) and s(x−a) are also polynomials of positive degree. However, this
means that p(x) is reducible over F , which is not possible. Hence, p(x+a) has to
be irreducible over F .

9. (a) Let g(x) = b0 + b1x+ . . .+ bmxm. Without loss of generality, suppose that
n≥ m. Thus, we can easily write g(x) = ∑

n
i=0 bixi with bm+1 = . . .= bn = 0.

D( f (x)+g(x)) = D(
n

∑
i=0

(ai +bi)xi) =
n

∑
i=0

i(ai +bi)xi−1

=
n

∑
i=0

iaixi−1 +
n

∑
i=0

ibixi−1 = D( f (x))+D(g(x))

Similarly, one shows that D(α f (x)) = αD( f (x)) for all α ∈ F . Hence, D is a
linear mapping.

(b) Suppose char(F) = p.

D( f (x)) = 0⇔
n

∑
i=0

iaixi−1 = 0

⇔ iai = 0, ∀i = 0, . . . ,n
⇔ ai = 0, ∀i = 0, . . . ,n such that p - i

Thus, ker(D) = {a0 + apxp + a2px2p + . . .+ anpxnp : ai ∈ F,n ∈ Z≥0}. Če je
char(F) = 0, potem je očitno ker(D) = F .

(c) Firstly, let su show that the statement holds if f (x) = xn. Without loss of
generality, let us assume that n≥ m.

D(xng(x)) = D(xn ·
m

∑
i=0

bixi) =
m

∑
i=0

(i+n)bixi+n−1 =
m

∑
i=0

ibixi+n−1 +
m

∑
i=0

nbixi+n−1
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= xn
m

∑
i=0

ibixi−1 +nxn−1
m

∑
i=0

bixi = xnD(g(x))+D(xn)g(x)

We will prove the rest of the problem using mathematical induction on deg( f (x)g(x))=
d. If d = 0, since F [x] is a field, it follows that D( f (x)) = D(g(x)) = 0. Then

D( f (x)g(x)) = 0 = 0 ·g(x)+ f (x) ·0 = D( f (x))g(x)+ f (x)D(g(x)).

Suppose now that the statement holds for d = n−1 > 0. Let us consider the
case d = n . We denote with fn−1(x) = ∑

n−1
i=0 aixi.

D( f (x)g(x)) = D((anxn + fn−1(x))g(x)) = D(anxng(x)+ fn−1(x)g(x))
= anD(xng(x))+D( fn−1(x)g(x))

= an · (nxn−1g(x)+ xnD(g(x)))+D( fn−1(x))g(x)+ fn−1(x)D(g(x))

= (nanxn−1 +D( fn−1(x)))g(x)+(xn + fn−1(x))D(g(x))
= D( f (x))g(x)+ f (x)D(g(x))

1.5.4 Additional problems
1. Inspect the irreducibility of the following polynomials over Q.

(a) x2 +4x+2
(b) x4−10x2 +1
(c) x3 +3x2 +6x+3

(d) x3− x2−4
(e) 4x3−2x2 + x+1
(f) x50+14x−56

2. Factorize the polynomials f (x) = x4−1 and g(x) = 4x5+4x4−13x3−11x2+10x+
6 over Q, R and C.

3. Find the quotient and remainder when dividing f (x) with g(x) in Zn[x], if:
(a) f (x) = 4x5 +3x2 +2x+4, g(x) = 2x2 +5, n = 7
(b) f (x) = x7 +7x5 +3x2 +11x+5, g(x) = x4 +3x2 +8x+4, n = 13.

4. Find all prime numbers p such that x+2 is a factor of x4 + x3 + x2− x+1 in Zp[x].
5. Find all irreducible polynomials of degree 3 in Z3[x].

1.6 Divisibility and reducibility in integral domains. Gaussian Rings.
1.6.1 Theoretical background

Prime and composite numbers in Z have different meanings in an Integral Domain!
Definition 1.6.1 If a,b ∈ R, R a commutative ring, we say that b divides a (denoted
b|a) if there is an element c ∈ R such that a = bc.

Definition 1.6.2 Let D be an integral domain, and a,b,c ∈ D.
1. If a = ub for some unit u, then a and b are associates (denoted a∼ b).
2. A nonzero element a of an integral domain D is called irreducible if a is not a

unit and, whenever b,c ∈ D with a = bc, then b or c is a unit.
3. A nonzero element a of an integral domain D is called prime if a is not a unit

and a|bc implies a|b or a|c.
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Definition 1.6.3 Let D be an integral domain. The element d ∈ D is a common divisor
of the elements a1, . . . ,an ∈ D if d|ai for all i = 1, . . . ,n.

Definition 1.6.4 Let D be an integral domain and a,b ∈ D We say that d ∈ D is the
greatest common divisor of a and b (denoted gcd(a,b) = d) if d is a common divisor
of a and b, and if p is a common divisor of a and b, then p|d.

Definition 1.6.5 Let D be an integral domain and f (x),g(x) ∈ D[x] We say that d(x) ∈
D[x] is the greatest common divisor of f (x) and g(x) if:

1. d(x) is a common divisor of f (x) and g(x);
2. if p(x) is a common divisor of f (x) and g(x), then p(x)|d(x);
3. d(x) is monic.

R If 1 6= d ∈ Z and d is not divisible by the square of a prime number, then Z[
√

d] =
{a+b

√
d : a,b ∈ Z} is an integral domain.

Definition 1.6.6 Let D be an integral domain. The mapping N : D→ N0 is called a
multiplicative norm on D, if:

1. N(a) = 0⇔ a = 0
2. N(ab) = N(a)N(b) for all a,b ∈ D

R The mapping N : Z[
√

d]→ N0 defined with N(a+b
√

d) = |a2−db2| is a multiplica-
tive norm on Z[

√
d].

Proposition 1.6.1 Let N be a multiplicative norm on an integral domain D. Then
1. N(x) = 1 if and only if x is a unit in D.
2. If N(x) is prime, then x is irreducible in D.

� Example 1.2 Let us find all the units in D = Z[
√
−5]. We have that, a+b

√
−5 ∈ D is

a unit if and only if N(a+b
√
−5) = |a2 +5b2|= a2 +5b2 = 1 in Z. Thus, we have that

a =±1 and b = 0. In other words, −1 and 1 are the units in D. �

Theorem 1.6.2 In an integral domain, every prime is an irreducible.

Proof. Suppose p ∈ D is prime. Assume p = ab. Then p|a or p|b. Without loss of
generality, let a = pt so that p = ptb. Since we are in an integral domain, the cancellation
laws hold and it follows that tb = 1, i.e., b is a unit. �

In general, the converse does not hold.

� Example 1.3 Let us consider the element 1+
√

5 ∈ Z[
√

5]. If 1+
√

5 = (a+b
√

5)(c+
d
√

5), then

4=N(1+
√

5)=N(a+b
√

5)N(c+d
√

5)= |(a2−5b2)(c2−5d2)|⇒ (a2−5b2)(c2−5d2)=±4.

Let us consider a2− 5b2 = ±2 in Z4, that is, a2− b2 = ±2. For x ∈ Z4 we have that
x2 ∈ {0,1}, but then a2−b2 6=±2 for any a,b ∈ Z4. Hence, we must have a2−5b2 =±1,
i.e. a+b

√
5 is a unit. By definition, 1+

√
5 is irreducible.
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To show that it is not a prime, we note that

1+
√

5|(1+
√

5)(1−
√

5) =−4 = 2 · (−2).

If 1+
√

5|2, then (1+
√

5)(a+ b
√

5) = 2 yields a+ b = 0 and a+ 5b = 2. However,
this would mean that a = −1

2 , which is not possible. A similar conclusion follows, if
1+
√

5|−2. Hence, 1+
√

5 is not a prime. �

Definition 1.6.7 An integral domain D is called a Gaussian Ring or a Unique Factori-
sation Domain (in short UFD) if the following holds:

1. every nonzero non-unit element a ∈ D can be written as a finite product a =
a1 . . .an of irreducible elements a1, . . . ,an ∈ D and

2. the previous factorisation is unique up to the permutation of the factors and
associativity of the elements: if a = b1 . . .bm is another factorisation of a, then
m = n and there exists a permutation σ ∈ Sn such that ai ∼ bσ(i) for all 1≤ i≤ n.

1.6.2 Problems
1. Find the d(x) = gcd( f (x),g(x) and express it as d(x) = s(x) f (x) + t(x)g(x), if

f (x) = 2x3 +2x2 and g(x) = x4 +2x3 + x in Z3[x].
2. Show that there exists an integral domain which contains two elements that do not

have a gcd.
3. Show that 5 is reducible in Z[i] and irreducible in Z[

√
2].

4. Let D 6= 0 be an integral domain such that each pair of nonzero elements from D are
associated. Prove that D is a field.

5. Find the gcd(3,1+ i
√

5) in Z[i
√

5].
6. In Z[

√
−5], there is no greatest common divisor of 6 and 2(1+

√
−5).

7. Show that Z[
√
−5] is not a Gaussian ring.

1.6.3 Solutions
1.

2x+2
2x3 +2x2 +0x+0

)
x4 +2x3 +0x2 + x+0
x4 + x3 +0x2 +0x ↓

x3 +0x2 + x+0
x3 + x2 +0x+0

2x2 + x+0

x+2
2x2 + x+0

)
2x3 +2x2 +0x+0
2x3 + x2 +0x ↓

x2 +0x+0
x2 +2x+0

x+0

q1(x) = 2x2 +2, r1(x) = 2x2 + x
q2(x) = x+2, r2(x) = x
q3(x) = 2x+1, r3(x) = 0

g(x) = q1(x) f (x)+ r1(x)
f (x) = q2(x)r1(x)+ r2(x)

r1(x) = q3(x)r2(x)
Hence, we have that

r2(x) = f (x)−q2(x)r1(x) = f (x)−q2(x)(g(x)−q1(x) f (x))
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= (1−q1(x)q2(x)) f (x)−q2(x)g(x)

x = (2x2 +2) f (x)+(2x+1)g(x)

2. Let F be a field. With S we denote the subset

S = {
n

∑
i=0

aixi ∈ F [x] : n ∈ N,a1 = 0}

consisting of all polynomials in F [x] without the linear factor.
We claim that S is a integral subdomain of F [x]. It suffices to show that S is a subring.
Let f (x),g(x) ∈ S be arbitrary.

• 0 ∈ S
• f (x)−g(x) ∈ S(x), since a1−b1 = 0−0 = 0
• f (x)g(x) ∈ S(x), since a1b0−a0b1 = 0

Thus, by the Subring Test, it follows that S≤ F [x], i.e., S is an integral domain. Let
us consider the elements x5,x6 ∈ S.
The monic divisors of x5 are 1,x2 and x3. The monic divisors of x6 are 1,x2,x3 and x4.
The common ones are 1,x2 and x3. However there is not a greatest common divisors
because the 2. condition of the definition is not satisfied (x2 - 1, x3 - x2, x2 - x3).

3. The units inZ[i] are {1,−1, i,−i}. Since 5=(2+ i)(2− i) and N(2+ i)=N(2− i)=
5 is prime, 5 can be written as a product of irreducible elements (remember, by
definition, irreducible elements are non-units) in Z[i] and thus, 5 is reducible in Z[i].
The units in Z[

√
2] are

{a+b
√

2 : N(a+b
√

2) = 1}= {a+b
√

2 : a2−2ab2 =±1}.

If 5 is reducible in Z[
√

2], then we would have that

5= (a+b
√

2)(c+d
√

2)⇒ 25=N(a+b
√

2)N(c+d
√

2) = |(a2−2b2)(c2−2d2)|.

Since a2−2b2,c2−2d2 ∈ Z we have the following cases:
(i) a2−2b2 =±5. If we consider this equation in Z5, we have that a2−2b2 = 0.

From the table:

a,b a2,b2 (mod 5) 2b2 (mod 5)
0 0 0
1 1 2
2 4 3
3 4 3
4 1 2

we see that a2−2b2 mod 5 = 0 only if a = b = 0. Which means that in Z we
have that a and b are divisible with 5. We conclude:

25|a2,b2⇒ 25|(a2−2b2)⇒ 25|±5  .

(ii) a2−2b2 =±1. Then a+b
√

2 is a unit.
(iii) a2−2b2 =±25. Then c2−2d2 =±1, that is, c+d

√
2 is a unit.
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We conclude that 5 is a product of two elements, out of which at least one is a unit.
Hence, 5 is irreducible in Z[

√
2].

4. If a 6= 0 is an element of D, then by hypothesis, a and a2 must be associates in D.
Then a2 = au for a suitable unit u ∈ D. Hence, a(a− u) = 0. Since we are in an
integral domain and a 6= 0 we have that a−u = 0. So, each nonzero element in D is
a unit. Thus, D is a field.

5. If d = gcd(3,1+ i
√

5) in Z[i
√

5], then N(d) divides N(3) = 9 and N(d) divides
N(1+ i

√
5) = 6. Thus, N(d) ∈ {1,3}. If we consider a2 +5b2 = 3 in Z5, then we

have a2 = 3. However, 3 is not a square in Z5. Hence, we must have N(d) = 1, that is,
d is a unit in Z[i

√
5]. The units in Z[

√
−5] are 1 and −1, hence 1 = gcd(3,1+ i

√
5).

6. We note that N(6) = 36 and N(2(1+
√
−5)) = 24. If x+y

√
−5 = d = gcd(6,2(1+√

−5)), then N(d)|36 and N(d)|24. Thus we have that N(d) ∈ {1,2,3,4,6,12}. On
the other hand, 2 divides 2(1+

√
−5) and 1+

√
−5 divides 6 (6 = (1+

√
−5)(1−√

−5)). Hence, N(2) = 4 and N(1+
√
−5) = 6 divide N(d). It follows that N(d) =

12. If we consider the equation a2 +5b2 = 12 in Z5, then a2 = 2. However, 2 is not
a square in Z5. Hence, there are no a,b ∈ Z such that a2 +5b2 = 12. In other words,
the gcd(6,2(1+

√
−5)) does not exist.

7. Any element of the ring Z[
√
−5] is of the form a+ b

√
−5 for some integers a,b.

The associated norm N is given by

N(a+b
√
−5) = (a+b

√
−5)(a−b

√
−5) = a2 +5b2.

Consider the case when a = 2,b = 1. Then we have

(2+
√
−5)(2−

√
−5) = 9 = 3 ·3. (1.2)

We claim that the numbers 3,2±
√
−5 are irreducible elements in the ring Z[

√
−5].

To prove the claim at once, we show that any element in Z[
√
−5] of norm 9 is

irreducible.
Let α be an element in Z[

√
−5] such that N(α) = 9. Suppose that α = βγ for some

β ,γ ∈ Z[
√
−5]. Out goal is to show that either β or γ is a unit. We have

9 = N(α) = N(β )N(γ).

Since the norms are nonnegative integers, N(β ) is one of 1,3,9. If N(β ) = 1, then it
yields that β is a unit. If N(β ) = 3, then we write β = a+b

√
−5 for some integers

a,b, and we obtain
3 = N(β ) = a2 +5b2.

A quick inspection yields that there are no integers a,b satisfying this equality. Thus
N(β ) = 3 is impossible. If N(β ) = 9, then N(γ) = 1 and thus γ is a unit. Therefore,
we have shown that either β or γ is a unit. Note that the elements 3,2±

√
−5 have

norm 9, and hence they are irreducible by what we have just proved.
Since the units in Z[

√
−5] are ±1, obviously 3 � 2±

√
−5. In other words, the

factorisation is not unique. Thus, the ring Z[
√
−5] is not a UFD.

1.6.4 Additional problems
1. Find the gcd for the listed pairs of polynomials over the given field:
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(a) f1(x) = x3− x2− x+1, g1(x) = x4−3x2−2x+4 over Q
(b) f2(x) = x4 +3x2 +4x, g2(x) = 2x2−2x−4 over Q
(c) f3(x) = x5 +3x3 + x2 +2x+2, g3(x) = x4 +3x3 +3x2 + x+2 over Z5

For every pair of polynomials fi(x) and gi(x), express the gcd as si(x) fi(x) +
ti(x)gi(x), i = 1,2,3.

2. Find the associates of a+ ib ∈ Z[i].
3. What are the irreducible elements in Z?
4. Which of the integers {2,3,5,7,11,13,17,19} are irreducible in Z[

√
5]?

5. Is 2 prime in Z[
√
−5]?

6. Prove that in an integral domain D with multiplicative norm N, it holds that N(1) = 1
and N(u) = 1 for every unit u ∈ D.

7. Prove that N(a+b
√
−5) = a2 +5b2 defines a norm on Z[

√
−5].

8. Show that Z[
√
−6] is not a UFD (Hint: Consider the element 10).

9. Show that
√
−2,1−

√
−2,1+

√
−2,5 and 7 are all irreducible in Z[

√
−2].

10. In the ring Z[
√

2], show that 5 is a prime but 7 is not.
11. Show that there are infinitely many units in Z[

√
2]. (Hint: Consider the element

(1+
√

2)n, n ∈ N).
12. Find gcd(5,1+3i) in Z[i].
13. In the ring R = Z[

√
−6] verify that the following hold:

(a) there are no elements of norm equal to 2 or 5;
(b) the elements 2,5,2−

√
−6 are irreducible but not prime;

(c) gcd(5,2+
√
−6) = 1, where 1 is the unity in R;

(d) gcd(10,4+2
√
−6) does not exist.



2. Ideals and Factor Rings

2.1 Homomorphisms and Factor Rings. Ideals.
2.1.1 Theoretical background

In Section 1.1 we have already introduced the notion and basic properties of ring homo-
morphisms. Similarly as one defines factor groups in group theory, we can talk about
their analogue, factor (quotient) rings in ring theory. Before we define them, we state the
following useful theorems.

Theorem 2.1.1 Let φ : R→ R′ be a ring homomorphism with kernel H. Then the
additive cosets of H form a ring R/H whose binary operations are defined by choosing
representatives. That is, the sum of two cosets is defined by

(a+H)+(b+H) = (a+b)+H (2.1)

and the product of cosets is defined by

(a+H)(b+H) = (ab)+H. (2.2)

Also, the map µ : R/H→ φ [R] defined by µ(a+H) = φ(a) is an isomorphism.

In the following theorem we characterize exactly those H for which (2.2) is well-
defined.

Theorem 2.1.2 Let H be a subring of R. Multiplication of additive cosets of H is well
defined by the equation

(a+H)(b+H) = (ab)+H

if and only if ah ∈ H and hb ∈ H for all a,b ∈ R and h ∈ H.

In group theory, normal subgroups are precisely the type of substructure of groups



44 Chapter 2. Ideals and Factor Rings

required to form a factor group with a well-defined operation on cosets given by operating
with chosen representatives.

From Theorem 2.1.2, we see that in ring theory, the analogous substructure must be
subring H of R such that aH ⊆ H and Hb⊆ H for all a,b ∈ R, where aH = {ah : h ∈ H}
and Hb = {hb : h ∈ H}. From now on we will use N rather than H, so that we known we
are talking about the ring analogous of normal subgroups. Fro this purpose, we define the
following important structure.

Definition 2.1.1 An additive subgroup N of a ring R satisfying the properties

aN ⊆ N ∧ Nb⊆ N, ∀a,b ∈ R

is called an (two-sided) ideal.

R If RN ⊆ N (NR⊆ N) we say that N is a left (right) ideal of R.

Theorem 2.1.3 N ⊆ R is a left (right) ideal in R if and only if the following hold:
(i) 0 ∈ N

(ii) a−b ∈ N, ∀a,b ∈ N
(iii) na ∈ N (an ∈ N), ∀n ∈ N, a ∈ R

R Obviously every ideal in a ring R (left, right or two-sided) is a subring of R.

We are now able to define factor rings.

Corollary 2.1.4 Let N be an ideal of a ring R. Then the additive cosets of N form a
ring R/N with the binary operations defined by (2.1) and (2.2), for N = H.

Definition 2.1.2 The ring R/N in the preceding corollary is the factor ring (or quotient
ring) of R by N.

R Do not confuse the term quotient ring with the notion of field of quotients of an
integral domain.

To conclude, we note the following important and useful result.

Theorem 2.1.5 Let φ : R→ R′ be a ring homomorphism with kernel N. Then φ [R] is
a ring, and the map µ : R/N→ φ [R] given by µ(x+N) = φ(x) is an isomorphism. If
γ : R→ R/N is the ring homomorphism given by γ(x) = x+N, then for each x ∈ R, we
have that φ(x) = µ(γ(x)).
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2.1.2 Problems
1. Find all ideals of the ring Z. Is Z an ideal in Q?
2. Let K be a ring with unity 1 and J an arbitrary (one or two-sided) ideal in K. Prove:

(a) If 1 ∈ J, then J = K.
(b) If K is an arbitrary field, then 0 and K are the only ideals in K.

3. Find all ideals in the ring Z18. Generalize to Zn.
4. Let R and R′ be rings and I′ and ideal in R′. Let f−1(I′) = I be the preimage of I′ by

f . Show that I is an ideal in R.
5. Let R and R′ be commutative rings and let f : R→ R′ be a ring homomorphism. Let

I and I′ be ideals of R and R′, respectively.
(a) Prove that f (

√
I)⊂

√
f (I)1

(b) Prove that
√

f−1(I′) = f−1(
√

I′)
(c) Suppose that f is surjective and ker( f )⊂ I. Then prove that f (

√
I) =

√
f (I)

6. Is it true that a set of nilpotent elements in a commutative ring R is an ideal of R.
Can we omit the word ‘commutative”.

7. Suppose that f : R→ R′ is a surjective ring homomorphism. Prove that if R is a
Noetherian2 ring, then so is R′.

8. Let R be a ring and I its ideal. Prove that the quotient ring R/I is commutative if and
only if (rs− sr) ∈ I for every r,s ∈ R.

9. Let R be a ring with unity and I a left ideal in R. If some element a ∈ I has a left
multiplicative inverse, prove that then I = R.

10. Let R =
{[

u v
0 u

]
: u,v ∈Q

}
a ring with standard addition and multiplication of matri-

ces. Show that I =
{[

0 b
0 0

]
: b ∈Q

}
is an ideal in R. Prove that the quotient ring R/J

is isomorphic to Q.

2.1.3 Solutions
1. Let I be an ideal in Z. Then I is a subring of Z. Hence, (I,+)≤ (Z,+)⇒ I = mZ

for some m ∈ N0.
Claim: I is an ideal in Z if and only if I = mZ, m ∈ N0.
⇒ Already confirmed.
⇐ Let I = mZ for an arbitrary m ∈ N0. Since I is a subring of Z, we have that (i)

and (ii) from Theorem 2.1.3 hold. It remains to show (iii). Let x ∈ Z and y ∈ mZ be
arbitrary.

⇒y = mỹ, ỹ ∈ Z
⇒xy = xmỹ = m(xỹ) ∈ mZ

yx = mỹx = m(ỹx) ∈ mZ
⇒I is an ideal in Z

Since (Z,+)≤ (Q,+), we have that (i) and (ii) from Theorem 2.1.3 hold. Let us
check (iii). If we take x = 2 ∈ Z and y = 1

3 ∈Q we have that yx = 2
3 /∈ Z. Hence, Z

is not an ideal in Q.

1For an ideal I in R we define its radical ideal
√

I as
√

I = {a ∈ R : an ∈ I for some n ∈ N}.
2A ring R is said to be Noetherian if for an increasing chain of ideals I1 ⊆ I2 ⊆ . . .⊆ Ik ⊆ . . . in R there

exists such a number N ∈ N for which IN = IN+1 = . . ..
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2. (a) Let us take an arbitrary k ∈ K. Since k = k ·1 and 1 ∈ J, it follows that k ∈ J
(since J is an ideal in K). Hence, K ⊆ J. Obviously, J ⊆ K and thus we must
have that J = K.

(b) Let J be an arbitrary ideal. If J = {0}, we are done. Suppose that J 6= {0}.
Hence, there exists an element 0 6= x ∈ J. Since F is a field, we can find its
inverse x−1 ∈ F . So x−1 · x = 1 ∈ J. From (a) we must have that J = K.

3. Every ideal in a ring is also a subring and as such it is an additive subgroup in the
additive group of the ring. The cyclic group Z18 contains the following subgroups:

{0}= 18Z18, 9Z18, 6Z18, 3Z18, 2Z18, Z18.

For reader: Confirm that al of the above sets are indeed ideals in Z18.

Generalization: For every n ∈ N, the ideals in Zn are exactly the sets kZn, where k
is a divisor of n.
Proof. Let I be an arbitrary ideal in Zn. We know that (I,+)≤ (Zn,+). Since (the
additive group) Zn is cyclic, all of its subgroups are cyclic as well. Moreover, we
know that all of them are of the form kZn, where k is a divisor of n. Let x ∈ Zn and
y ∈ kZn be arbitrary. We have that

y = kτ, τ ∈ Zn⇒ xy = yx = k · (xτ) ∈ kZn.

Hence, I = kZn for all k ∈ N such that k|n.
4. We need to show two things: (I,+)≤ (R,+) and IR,RI ⊆ I.

• Let a,b ∈ I be arbitrary. From here, we have that f (a), f (b) ∈ I′. Since I′ is an
ideal, it follows that f (a)− f (b) ∈ I′. Furthermore, f is a ring homomorphism
and thus f (a−b) ∈ I′. This implies that a−b ∈ f−1(I′) = I.

• Let a ∈ I and r ∈ R be arbitrary. Since f (a) ∈ I′, f (r) ∈ R′ and from the fact
that I′ is an ideal in R′, we have that f (r) f (a) ∈ I′, f (a) f (r) ∈ I′. Furthermore,
f is a homomorphism and thus f (ra), f (ar) ∈ I′. Hence, ra,ar ∈ f−1(I′) = I.

In other words, I is an ideal in R.
5. (a) Let x ∈ f (

√
I) be arbitrary. Then there exists an element a ∈

√
I such that

f (a) = x. Since a ∈
√

I, there exists an integer n ∈ N such that an ∈ I. Hence,
since f is a homomorphism, it follows that xn = f (a)n = f (an)∈ f (I). In other
words, x ∈

√
f (I), i.e., f (

√
I)⊆

√
f (I).

(b) ⊆ Let x ∈
√

f−1(I′) be arbitrary. It follows that:

(∃n ∈ N) xn ∈ f−1(I′)⇒ f (xn) ∈ I′

⇒ f (x)n ∈ I′ ( f homomorphism)

⇒ f (x) ∈
√

I′

⊇ Let x ∈ f−1(
√

I′) be arbitrary. It follows that:

f (x) ∈
√

I′⇒ (∃n ∈ N) f (x)n ∈ I′

⇒ f (xn) ∈ I′

⇒ xn ∈ f−1(I′)⇒ x ∈
√

f−1(I′)

Hence, f−1(
√

I′) =
√

f−1(I′).
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(c) ⊆ Follows from (a).
⊇ Let x ∈

√
f (I) ⊆ R′ be arbitrary. This means that there exists an integer

n∈N such that xn ∈ f (I), i.e., there exists an element a∈ I such that xn = f (a).
Because f is surjective, we know that there exists an element y ∈ R such that
f (y) = x. In other words

f (a)= xn = f (y)n = f (yn)⇒ f (a)− f (yn)= 0⇒ f (a−yn)= 0⇒ a−yn ∈ ker( f )⊆ I.

Since a ∈ I, we must also have that yn ∈ I, that is, y ∈
√

I. From this, we have
that f (y) = x ∈ f (

√
I), i.e.,

√
f (I)⊆ f (

√
I). Hence, f (

√
I) =

√
f (I).

6. With N(R) = {x ∈ R : (∃n ∈ N) xn = 0} we denote the set of all nilpotent elements
in R. Obviously, 0 ∈ N(R). Let x ∈ N(R) and a ∈ R be arbitrary. Thus, there exists
an integer n ∈ N such that xn = 0. But then also, anxn = 0⇔ (ax)n = (xa)n = 0
(R commutative). In other words, ax,xa ∈ N(R). Let now x,y ∈ N(R) be arbitrary.
Hence, xn = 0 and ym = 0 for some n,m ∈ N. We have that, since R is commutative,

(x− y)p =
p

∑
k=0

(
p
k

)
xp−kyk = 0,

if p− k ≥ n and k ≥ m. In other words, p ≥ n+m. So, (x− y)n+m = 0, that is,
x− y ∈ N(R). We conclude that N(R) is indeed an ideal in R.

If R is not commutative, then N(R) is not necessarily an ideal in R. Counterex-
ample: Let R be the ring of 2×2 real matrices. Take

A =

[
0 1
0 0

]
, B =

[
0 0
1 0

]
∈ R.

It is easy to compute that A2 = 0 and B2 = 0, i.e. A,B ∈ N(R). However, A+B is
not a nilpotent because

(A+B)n =

{
A+B, n = 2k+1
I2, n = 2k , k ∈ N

7. Let I1 ⊆ I2 ⊆ . . .⊆ Ik ⊆ . . . be an increasing chain of ideals in R′. From Problem 4 it
follows that the preimages f−1(Ik) of the ideals Ik under the homomorphism f are
ideals in R. Hence, we get an increasing chain of ideals in R

f−1(I1)⊆ f−1(I2)⊆ . . .⊆ f−1(Ik) . . .

Since R is Noetherian, there exists an integer N ∈ N such that

f−1(IN) = f−1(IN+1) = . . .

Since f is a surjective homomorphism, it holds that

f ( f−1(Ik)) = Ik,

for every k ∈ N. Thus, we obtain that

IN = IN+1 = . . .

In other words, R′ is Noetherian.



48 Chapter 2. Ideals and Factor Rings

8.

R/I commutative ⇔ (r+ I)(s+ I) = (s+ I)(r+ I), ∀r,s ∈ R
⇔ rs+ I = sr+ I, ∀r,s ∈ R
⇔ (rs+ I)− (sr+ I) = I, ∀r,s ∈ R (0K/I = I)

⇔ (rs− sr)+ I = I, ∀r,s ∈ R
⇔ rs− sr ∈ I, ∀r,s ∈ R

9. Let I be a left ideal in R and let a ∈ I be a unit. Thus, there exists a−1 ∈ R. Since I is
a left ideal, it holds that aa−1 = 1 ∈ I. From Problem 2a it follows that I = R.

10. Let

α =

[
0 a
0 0

]
,β =

[
0 b
0 0

]
∈ I

be arbitrary. Since 0,α−β ∈ I. It follows that I is an additive group. Let

γ =

[
u v
0 u

]
∈ R

be arbitrary. Since

γα =

[
u v
0 u

]
·
[

0 a
0 0

]
=

[
0 ua
0 0

]
∈ I and

αγ =

[
0 a
0 0

]
·
[

u v
0 u

]
=

[
0 au
0 0

]
∈ I,

we conclude that I is an ideal in R. Let us define a mapping φ : R→Q with

φ

([
u v
0 u

])
= u.

For reader: Show that φ is a ring homomorphism.

Let us compute ker(φ) and im(φ). Claim: ker(φ) = I.
⊆ Let

ρ =

[
u v
0 u

]
∈ ker(φ)

be arbitrary. Then φ(ρ) = u = 0. Thus,

ρ =

[
0 v
0 0

]
∈ I⇒ ker(φ)⊆ I.

⊇ Let [
0 v
0 0

]
∈ I

be arbitrary. Since φ(ρ) = 0, it follows that ρ ∈ ker(φ). That is, I ⊆ ker(φ).
We conclude that I = ker(φ). Obviously, since φ is a surjective mapping, we have
that im(φ) =Q. From Theorem 2.1.5 we conclude that

R/ker(φ)∼= im(φ)⇔ R/I ∼=Q.
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2.1.4 Additional problems
1. Let R be a commutative ring and a ∈ R. Show that Ia = {x ∈ R : ax = 0} is an ideal

of R.
2. Show that a countable intersection of ideals in a ring R is again an ideal in R.
3. If S =

{[
a 0
0 b

]
: a,b ∈ R

}
, prove that the mapping

f :
[

a 0
0 b

]
7→ a

is a ring homomorphism of the ring S onto R. Find the kernel ker( f ) and the factor
ring S/ker( f ).

4. Show that the factor ring R/N(R), where N(R) is the ideal of nilpotent elements in
R, does not contain nilpotent elements.

5. Let R be a ring and I an ideal in R. If a ∈ R, prove that A = {r ∈ R : ra−ar ∈ I} is a
subring of R.

6. Let R be a commutative ring with unity in which every element is either nilpotent or
a unit. Prove that R/N(R) is a field, where N(R) is the ideal of nilpotent elements in
R.

7. Prove that the ring Fn×n of n×n, n≥ 2, matrices over the field F has only trivial
ideals.

8. Let R be a ring without zero divisors in which every subring is an ideal. Prove that R
is commutative.

9. Let I be an ideal in a commutative ring R.
(a) Show that

√
I = {r ∈ R : (∃n ∈ N) rn ∈ I} is an ideal too.

(b) Verify the following equalities:
√√

I =
√

I,
√

I∩ J =
√

I∩
√

J and
√

I + J =√√
I +
√

J.

2.2 Maximal, principle and prime ideals
2.2.1 Theoretical background

In this section we will discus the notion of ideals in integral domains and fields.
Definition 2.2.1 Let R be a ring. An ideal P 6= R is said to be prime, if for all a,b ∈ R
it holds:

ab ∈ P⇒ a ∈ P ∨ b ∈ P.

� Example 2.1 The zero ideal in any integral domain is prime since ab = 0 if and only if
a = 0 or b = 0. If p is a prime integer, then the ideal pZ is prime since ab ∈ pZ means
that p|ab, which implies that either p|a or p|b, or equivalently, a ∈ pZ or b ∈ pZ. �

Definition 2.2.2 A proper ideal M ⊂ R of a ring R 6= 0 is said to be maximal, if for any
ideal I in R such that M ⊆ I ⊆ R, it follows that either I = M or I = R.

� Example 2.2 The ideal 3Z is maximal in Z, but the ideal 4Z is not since 4Z⊂ 2Z⊂ Z.
�

Theorem 2.2.1 Let R be a commutative ring with unity. Then the following hold:
1. R/P is an integral domain if and only if P is a prime ideal in R.
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2. R/M is a field if and only if M is a maximal ideal in R.
3. Every maximal ideal of R is a prime ideal.

Definition 2.2.3 If R is a commutative ring with unity and a ∈ R, the ideal {ra : r ∈ R}
of all multiples of a is the principle ideal generatred by a and is denoted with 〈a〉. An
ideal N of R is a principle ideal if N = 〈a〉 for some a ∈ R.

Definition 2.2.4 An integral domain in which every ideal is principle is called a princi-
ple ideal domain (PID).

Theorem 2.2.2 Let F be a field. Then the following hold:
1. Every ideal in F [x] is principal.
2. An ideal 〈p(x)〉 6= {0} of F [x] is maximal if and only if p(x) is irreducible over F .

Noehter’s Isomorphism Theorems:

Theorem 2.2.3 — First Isomorphsim Theorem. If f : R→ R′ is a ring homomorphism.
Then:

1. ker( f ) is an ideal of R.
2. im( f ) is a subring of R′.
3. R/ker( f )∼= im( f ).

In particular, if f is surjective, then R/ker( f )≡ R′.

Theorem 2.2.4 — Second Isomorphism Theorem. Let R be a ring, S a subring of R
and I an ideal of R. Then:

1. The sum S+ I = {s+ i : s ∈ S, i ∈ I} is a subring of R,
2. S∩ I is an ideal of S.
3. (S+ I)/I ∼= S/(S∩ I).

Theorem 2.2.5 — Third Isomorphism Theorem. Let R be a ring and let A,B be ideals
of R, with B⊆ A⊆ R. Then:

1. The set A/B is an ideal of the quotient ring R/B.
2. (R/B)/(A/B)∼= R/A.

2.2.2 Problems
1. Find all prime and maximal ideals in Z6.
2. Find all prime and maximal ideals in Z12.
3. Find all prime and maximal ideals in Z2×Z2.
4. Find all c ∈ Z3 such that Z3[x]/〈x3 + c〉 is a field.
5. Find all c ∈ Z3 such that Z3[x]/〈x3 + x2 + c〉 is a field.
6. Let F be a field and f (x),g(x) ∈ F [x]. Show that f (x) divides g(x) if and only if

g(x) ∈ 〈 f (x)〉.
7. Prove that in a commutative ring with unity R a proper ideal M is maximal if and

only if for every r /∈M there exists an element xr ∈ R such that 1+ rxr ∈M.
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8. Let R be a commutative ring with unity 1 6= 0. Suppose that for each element a ∈ R
there exists a positive integer n such that an = a. Prove that every prime ideal is
maximal.

9. Show that the ideal P = 〈2,
√

10〉= {a+b
√

10|a,b ∈ Z,2|a} of the ring Z[
√

10] is
prime.

10. Let R be a PID. Let a ∈ R be a nonzero, non-unit element. Show that the following
are equivalent:

(a) The ideal 〈a〉 is maximal.
(b) The ideal 〈a〉 is prime.
(c) The element a is irreducible.

11. In a PID, any irreducible element is a prime element.

2.2.3 Solutions
1. We know that every ideal in Zn is exactly of the form kZn, where k|n. Because a

finite integral domain is a field, the prime and the maximal ideals coincide.

Ideals in Z6 Prime Ideal Maximal Ideal
Z6 YES NO

2Z6 = {0,2,4} YES YES
3Z6 = {0,3} YES YES
6Z6 = {0} NO NO

We note the following useful theorem:

Theorem 2.2.6 Zn/〈d〉 is an integral domain if and only if d 6= n is prime.

2.

Ideals in Z12 Prime Ideal Maximal Ideal
Z12 NO NO

2Z12 YES YES
3Z12 YES YES
4Z12 NO NO
6Z12 NO NO

12Z12 = {0} NO NO
3. If R and S are rings with unity, then every ideal in R×S is of the form I× J where I

and J are ideals in R and S, respectively.

Ideals in Z2×Z2 Prime Ideal Maximal Ideal
{0}×{0} NO NO
{0}×Z2 YES YES
Z2×{0} YES YES
Z2×Z2 NO NO

We note the following:

R Let R and S be rings, I and J ideals of R and S respectively. Then

(R×S)/(I× J)∼= (R/I)× (S/J). (2.3)
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From (2.3) we have that (Z2×Z2)/({0}×Z2)∼=Z2 and (Z2×Z2)/(Z2×{0})∼=Z2.
Since Z2 is a field, from Theorem 2.2.1, it follows that Z2×{0} and {0}×Z2 are
maximal, and also prime.

4. From Theorems 2.2.2 and 2.2.1, if F is a field and f (x) ∈ F [x], we have that

F/〈 f (x)〉 is a field ⇔ 〈 f (x)〉 is maximal ⇔ f (x) is irreducible over F

Hence, we need to find all c ∈ Z3 such that f (x) = x3 + c is irreducible over Z3. By
inspecting the values for c = 0,1 and 2, we observe that only for no value of c we
have that f is irreducible.

5. Similarly as in the previous problem, we need to determine all c ∈ Z3 for which the
polynomial f (x) = x3 +x2 +c is irreducible over Z3. The preceding is satisfied only
for c = 2.

6.
f (x)|g(x)⇔ (∃q(x) ∈ F [x])g(x) = f (x)q(x)⇔ g(x) ∈ 〈 f (x)〉.

R Every nonzero polynomial g(x) ∈ 〈 f (x)〉 is of degree at least deg( f ).

7. ⇒ Let M be a maximal ideal. Then for r /∈M, M + rR = R, since M + rR is an
ideal which properly contains M. Thus, for some m ∈M and x ∈ R we must
have m+ rx = 1, in other words, if we denote with xr = −x, we obtain that
1+ rxr = m ∈M.

⇐ Suppose that for every element r /∈ M there exists an element xr ∈ M such
that 1+ rxr = m ∈M. Since the ideal M + rR contains 1, we must have that
M+ rR = R (Problem 2a). Thus, if M ⊆ I and M 6= I, then for r ∈ I \M, rR⊆ I
and M+ rR = R⊆ I, that is, I = R. Thus, M is maximal.

8. Let I be a prime ideal of the ring R. To prove that I is a maximal ideal, it suffices
to show that the quotient R/I is a field. Let ā = a+ I be a nonzero element of R/I,
where a ∈ R. It follows from the assumption that there exists an integer n > 1 such
that an = a. Then we have

ān = an + I = a+ I = ā.

Thus we have
ā(ān−1−1) = 0

in R/I. Note that R/I is an integral domain since I is a prime ideal. Since ā 6= 0, the
above equality yields that ān−1−1 = 0, and hence

ā · ān−2 = 1.

It follows that ā has a multiplicative inverse ān−2. This proves that each nonzero
element of R/I is invertible, hence R/I is a field.

9. Suppose that a+b
√

10,c+d
√

10 ∈ Z[
√

10] and the product

(a+b
√

10)(c+d
√

10) ∈ P.

Then expanding the product, we have

ac+10bd +(ad +bc)
√

10 ∈ P.
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Since ac+10bd must be an even number, we have that either a or c is even. Hence
either

a+b
√

10 ∈ P or c+d
√

10 ∈ P,

and we conclude that P is a prime ideal.
10.

(a)⇒ (b) Follows from Theorem 2.2.1.

(b)⇒ (c) Now suppose that the ideal 〈a〉 is prime. Let a = bc for some elements b,c ∈ R.
Then the element a = bc is in the prime ideal 〈a〉, and thus we have either b or
c is in 〈a〉. Without loss of generality, we assume that b ∈ 〈a〉. Then we have
b = ad for some d ∈ R. It follows that

a = bc = adc

and since R is a domain, we have

1 = dc

and hence c is a unit. Therefore the element a is irreducible.
(c)⇒ (a) Suppose that a is an irreducible element. Let I be an ideal of R such that

〈a〉 ⊆ I ⊆ R.

Since R is a PID, there exists b ∈ R such that I = 〈b〉. Then since 〈a〉 ⊆ 〈b〉, we
have a = bc for some c ∈ R. The irreducibility of a implies that either b or c is
a unit. If b is a unit, then we have I = R. If c is a unit, then we have 〈a〉= I.
Therefore the ideal 〈a〉 is maximal.

11. Let p be an irreducible element in R, R is a PID. From the previous problem we have
that this statement is equivalent to saying that the ideal 〈p〉 is prime. We will show
that this is further equivalent to saying that p is a prime element.

Let 〈p〉 be a prime ideal and suppose that p|ab, then there exists an element r ∈ R
such that pr = ab. This means that ab ∈ 〈p〉. Since 〈p〉 is prime, we have that either
a ∈ 〈p〉 or b ∈ 〈p〉, in other words, p|a or p|b. In a similar manner, one can show
the other implication.

R Every PID is also a UFD. But not every UFD is a PID.

2.2.4 Additional problems
1. Let R be an integral domain in which every sets S of ideals contains an ideal I such

that no other ideal J ∈ S is not contained in I (we say that I is a minimal element of
the set S). Prove that R is a field.

2. Let R be a ring with unity which contains exactly one maximal left ideal M. Prove:
(a) M is the set of all elements in R which do not have a left multiplicative inverse.
(b) No element in M has a right multiplicative inverse.

3. Let R be a ring with unity which has only one maximal left ideal M. Prove:
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(a) M is a two-sided ideal which contains all proper left and right ideals of the ring
R.

(b) R/M is a skew-field (division ring).
4. Let M be a maximal ideal in a commutative ring R with unity in which for every

x ∈M, 1+ x has a multiplicative inverse. Prove that M is the only maximal ideal in
R. (Hint: Use the previous problem.)

5. Let R be a ring with unity which contains exactly one maximal left ideal M. Show
that the only idempotents of R are 0 and 1.



3. Extension Fields

3.1 Introduction to Extension Fields
3.1.1 Theoretical background

We are now in the position to show that, loosely speaking, every non-constant polynomial
has a zero. Firstly, before stating the result, we note the following definition.

Definition 3.1.1 A field E is an extension field of a field F if F ≤ E and we denote it
with E : F .

Theorem 3.1.1 — Kronecker’s Theorem. Let F be a field and let f (x) be a non-
constant polynomial in F [x]. Then there exists an extension field E of F and α ∈ E such
that f (α) = 0.

When talking about elements of an extension field, we will distinguish two cate-
gories.

Definition 3.1.2 An element α of an extension field E of a field F is algebraic over F
if f (α) = 0 for some nonzero f (x) ∈ F [x]. Otherwise, we say that α is transcendental
over F .

� Example 3.1 C is an extension field of Q. Since
√

2 ∈ C is a zero of x2 +2 ∈Q[x], we
see that

√
2 is algebraic over Q. It is well known (but not easy to prove,) that π and e are

transcendental over Q. �

The next theorem gives us a useful characterisation of algebraic and transcendental
elements over F in an extension field E of F .

Theorem 3.1.2 Let E be an extension field of a field F and let α ∈ E. Let φα : F [x]→ E
be the evaluation homomorphism of F [x] into E such that φα(a) = a for a ∈ F and
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φα(x) = α . Then α is transcendental over F if and only if φα gives an isomorphism of
F [x] with a subdomain of E, that is, if and only if φα is injective.

We note the following theorem which will be of key significance in future work.

Theorem 3.1.3 Let E be an extension field of F and let α ∈ E be algebraic over F .
Then there is an irreducible polynomial p(x) over F such that p(α) = 0. The irreducible
polynomial p(x) is uniquely determined up to a constant factor in F and is a polynomial
of positive degree in F [x] having α as a zero. If f (α) = 0 for f (x) ∈ F [x], with f (x) 6= 0,
then p(x)| f (x).

R By multiplying with a suitable constant in F , we can assume that the coefficient of
the highest power of x appearing in p(x) is 1. We say that in that case p(x) is monic.

Definition 3.1.3 Let E be an extension field of a field F and let α be algebraic over
F . The unique monic polynomial p(x) having the property described in the previous
theorem is the irreducible polynomial for α over F and will be denoted with irr(α,F).
The degree of irr(α,F) is the degree of α over F , denoted by deg(α,F).

Definition 3.1.4 Let E be an extension field of F and let α ∈ E. The smallest subfield
of E containing both F and α is called the simple extension of F and is denoted by
F(α). If α is algebraic over F , then F(α) = φα [F [x]]. If α is transcendental over F,
then F(α) is the quotient field of φα [F [x]].

The following remark is important and please read it carefully so that you do not get
confused with the notation going onwards.

R Let E : F be an extension of the field F and α ∈ E. With F [α] we denote the smallest
subring of E which contains F and α . Moreover, F [α] = { f (α) : f ∈ F [x]}.
Let S⊆ E be an arbitrary set. With F(S) we denote the smallest subfield in E which
contains F and S. In case that S has finitely many elements a1, . . . ,an we write
F(a1, . . . ,an) instead of F(S).

Theorem 3.1.4 Let E be an extension field of F and let α ∈ E be algebraic over F . Let
n = deg(α,F). Then

F(α) = {a0 +a1α + . . .+an−1α
n−1 : a0, . . . ,an−1 ∈ F}.

3.1.2 Problems
1. Show that the given elements α ∈ C are algebraic over Q:

(a) α = 1+
√

2 (b) α = 1+ i (c) α =
√

1+ 3
√

2

2. Let E : F be a field extension of F and α ∈ E algebraic over F . Prove: If f ∈ F [x] is
irreducible and f (α) = 0, then f = c · irr(α,F) for some c ∈ F .

3. Find irr(α,Q) and deg(α,Q) for:



3.1 Introduction to Extension Fields 57

(a) α =
√

3−
√

6 (b) α =
√

3+
√

2

4. Show that π2 and π +2 are transcendental over Q.
5. Determine if the given α ∈ C is algebraic or transcendental over the given field F .

If it is algebraic, find deg(α,F).

(a) α =
√

π, F =Q (b) α =
√

π, F = R (c) α = π2, F =Q(π3)

6. Let Z2(α) be the extension of Z2, where α is the zero of the polynomial x2 + x+1.
Determine that the polynomial is indeed irreducible over Z2 and write the elements
of Z2(α). Factorize the polynomial x2 + x+1 in (Z2(α))[x].

7. Let E be the extension field of the finite field F , where |F | = q. Let α ∈ E be
algebraic over F with deg(α,F) = n. Show that F(α) has exactly qn elements.

8. Show that Q(
√

2,
√

3) =Q(
√

2,
√

3).
9. Prove that the polynomial f (x) = x3 +9x+6 is irreducible over the field of rational

numbers Q. Let θ be a root of f (x). Then find the inverse of 1+θ in the field Q(θ).

3.1.3 Solutions
1. (a)

α = 1+
√

2

α−1 =
√

2

(α−1)2 = 2

α
2−2α−1 = 0

α is a zero of x2−2x−1 ∈Q[x]. Thus α is an algebraic number.
(b) Similarly as before, one obtains that α is a zero of x2−2x+2 ∈Q[x], and as

such it is an algebraic number.
(c) α is a zero of the polynomial x6− 3x4 + 3x2− 3 ∈ Q[x], and thus it is an

algebraic number.
2. Let g(x) = irr(α,F) be the irreducible polynomial for α over F . Then g(α) = 0.

Since f (α) = 0, we have that deg( f ) ≥ deg(α,F). This means, because of the
irreducibility of g, that f contains g as a factor. Since f is irreducible, the only
possibility is that f (x) = cg(x) for c ∈ F .

3. (a) It can be easily shown that α is a root of the polynomial f (x) = x4− 6x2 +
3 ∈ Q[x]. For p = 3, by Eisenstein’s criteria, it follows that f is irreducible
over Q. Furthermore, since f is monic, it follows that irr(α,Q) = f (x) and
deg(α,Q) = 4.

(b) α is a root of the polynomial f (x) = x4−10x2 +1 ∈Q[x]. Let us show that f
is irreducible over Q. Firstly, if f has a zero in Q, from Theorem 1.5.4, it must
have a zero α ∈ Z and this zero must divide 1. Thus α =±1, but

f (1) =−8 and f (−1) =−8.

In other words, f (x) has no linear factors. The only other possibility is that it
factors as two quadratic polynomials. In this case we may write

f (x) = (x2 +ax+b)(x2 + cx+d),
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and by Theorem 1.5.4 we may assume that a,b,c,d ∈ Z. If we equate coeffi-
cients, then we get the following equations:

bd = 1, ad +bc = 0, b+d +ac =−10, and a+ c = 0.

From bd = 1, it follows that b = d = 1 or −1. Then, from the third equation,
we have that ac =−12 or −18. Since a =−c, we have that c2 = 12 or 18 in
Z, but there is no c ∈ Z for which this holds. Thus, f (x) must be irreducible
over Q. Since f is monic, it follows that irr(α,Q) = f (x) and deg(α,Q) = 4.

4. If we suppose that π2 is algebraic over Q, then there exists a polynomial p(x)inQ[x]
such that p(π2) = 0. From here it follows that q(x) = p(x2) is also a polynomial
with rational coefficients and it holds that q(π) = p(π2) = 0, which implies that π

is algebraic over Q, which is not true. Thus π2 is transcendental over Q. A similar
conclusion implies that π +2 is also transcendental over Q.

5. (a) Suppose that
√

π is algebraic over Q. Then there exists a polynomial p(x) ∈
Q[x] such that p(

√
π) = 0. In the product p(x)p(−x), all terms with odd

powers cancel each other. Thus the product p(x)p(−x) can be considered as a
polynomial in the variable x2.

p(x)p(−x) = q(x2)⇒ q(π) = q(
√

π
2
) = p(

√
π)p(−

√
π) = 0,

which is a contradiction with the fact that π is transcendental over Q. Hence,
α has to be transcendental as well.

(b) Since
√

π ∈R, it is algebraic over R. It is the root of the polynomial x−
√

π ∈
R[x]. Thus, deg(

√
π,R) = 1.

(c) The polynomial x3− (π3)2 is a polynomial in Q(π3)[x] and π2 is a root of that
polynomial. Thus π2 is algebraic over Q(π3) and deg(π2,Q(π3)) = 3.

6. The polynomial x2 + x+ 1 ∈ Z2[x] is irreducible over Z2, because it is of degree
2,and 0 and 1 are not its roots. Thus x2 + x+ 1 = irr(α,Z2) and deg(α,Z2) = 2.
From Theorem 3.1.4, the elements of Z2(α) are 0+0α,0+1α,1+0α,1+1α , that
is,

Z2(α) = {0,1,α,α +1}.

Let us form the addition and multiplication table for Z2(α).

+ 0 1 α 1+α

0 0 1 α 1+α

1 1 0 1+α α

α α 1+α 0 1
1+α 1+α α 1 0

· 0 1 α 1+α

0 0 0 0 0
1 0 1 α 1+α

α 0 α 1+α 1
1+α 0 1+α 1 α

Since α is a root of x2 + x+1, it must contain x+α as a factor. Using long divison
and the tables above we obtain that

x2 + x+1 = (x+α)(x+1+α).

7. Follows directly from Theorem 3.1.4 and the fact that |F |= q.



3.1 Introduction to Extension Fields 59

8. It is easy to see that Q(
√

2+
√

3)⊆Q(
√

2,
√

3).
Now note that

(
√

2+
√

3)−1 =
1√

2+
√

3
=

√
2−
√

3
2−3

=
√

3−
√

2

and thus
√

3−
√

2 ∈Q(
√

2+
√

3). Since addition is closed in a field, we have that
√

2+
√

3+
√

3−
√

2 = 2
√

3 ∈Q(
√

2+
√

3)

and hence
√

3 ∈ Q(
√

2+
√

3). Note that by a similar argument you get
√

2 ∈
Q(
√

2+
√

3). Thus, it holds that Q(
√

2,
√

3)⊆Q(
√

2+
√

3).
9. Note that f (x) is a monic polynomial and the prime number 3 divides all non-leading

coefficients of f (x). Also the constant term 6 of f (x) is not divisible by 32. Hence
by Eisenstein’s criterion, the polynomial f (x) is irreducible over Q.
We divide the polynomial f (x) by x+1 and obtain

x3 +9x+6 = (x+1)(x2− x+10)−4

by long division. Then it follows that in the field Q(θ) ∼= Q[x]/〈 f (x)〉 (note that
f (x) = irr(θ ,Q)), we have

0 = (θ +1)(θ 2−θ +10)−4,

and hence this yields that we have the inverse

(1+θ)−1 =
1
4
(θ 2−θ +10).

3.1.4 Additional problems
1. Show that the polynomial x2 + 1 is irreducible over Z3. Let α be a root of the

polynomial x2+1 in the extension of Z3. Write down the multiplication and addition
tables for the field Z3(α). Factorize x2 +1 in Z3(α)[x].

2. Show that f (x) = x3+x2+1 is irreducible over Z2. Let α be a root of f (x) in Z2(α).
Factorize f (x) in Z2(α)[x].

3. Let E be an extension field of Z2 and let α ∈ E be algebraic of degree 3 over
Z2. Denote G = Z2(α). Classify the groups (G,+) and (G∗, ·) according to the
Fundamental Theorem of finitely generated abelian groups. As usual G∗ is the set of
nonzero elements of G.

4. Suppose that u is algebraic over the field F , and that a ∈ F . Show that u+ a is
algebraic over F , find its irreducible polynomial over F and show that deg(u+
a,F) = deg(u,F).

5. Show that
√

3 /∈Q(
√

2).
6. Let E be an extension field of F . If u ∈ E is transcendental over F , then show that

every element of F(u) that is not in F is also transcendental over F .
7. Show that the polynomial f (x) = x3 + x+1 is irreducible over Q. Let α ∈ C be a

root of f . Express 1
α

and 1
α+2 as a linear combination of the elements 1,α and α2.

8. Find the multiplicative inverse of the element 1 +
√

2 +
√

3 +
√

6 in the field
Q(
√

2,
√

3).
9. Let α and β be two different transcendental numbers. Is αβ also transcendental?
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3.2 Vector Spaces. Algebraic Extension
3.2.1 Theoretical background

Definition 3.2.1 Let F be a field. A vector space over F (or F-vector space) consists
of an abelian group (V,+) with an operation of scalar multiplication of each element
of V by each element of F on the left, such that for all a,b ∈ F and all α,β ∈ V the
following conditions hold:
(V 1) aα ∈V
(V 2) a(bα) = (ab)α
(V 3) (a+b)α = (aα)+(bα)
(V 4) a(α +β ) = (aα)+(aβ )
(V 5) 1α = α

The elements of V are called vectors, and the elements of F scalars.

� Example 3.2 Let E be an extension field over F . Then E can be regarded as a vector
space over F , where addition of vectors is the usual addition in E and scalar multiplication
aα is the usual field multiplication in E with a ∈ F,α ∈ E. �

Definition 3.2.2 Let V be an F-vector space. The spanning set for V is a set of vectors
{αi : i ∈ I} in V , such that every β ∈V can be written as a linear combination of the
vectors αi, that is, we have β = ∑i∈I aiαi, where all ai ∈ F .

Definition 3.2.3 An F-vector space V is finite dimensional if there is a finite subset of
V whose vectors span V .

� Example 3.3 If F ≤ E and α ∈ E is algebraic over F , then F(α) is a finite-dimensional
vector space over F . �

Definition 3.2.4 A set of vectors {αi : i ∈ I} is linearly independent if whenever
∑i∈I aiαi = 0, we have that ai = 0 for all i ∈ I. Otherwise, we say that they are linearly
dependent.

� Example 3.4 If E is a field extension of F and α ∈ E is algebraic over F such that
deg(α,F) = n, then every element of F(α) can be uniquely written as a linear combination
of {1,α, . . . ,αn−1}. Hence, the set of powers of α is linearly independent. �

Definition 3.2.5 A basis for a vector space is a linearly independent spanning set. If V
is finite-dimensional over F , we say that the dimension of V over F is the number of
elements in the basis.

Theorem 3.2.1 Let F ≤ E and α ∈ E be algebraic over F . If deg(α,F) = n then F(α)
is a vector space over F of dimension n, with basis {1,α, . . . ,αn−1}. Furthermore, every
β ∈ F(α) is algebraic over F and deg(β ,F)≤ deg(α,F).

Definition 3.2.6 An extension field E of F is an algebraic extension of F if every
element in E is algebraic over F .

Definition 3.2.7 Let E be an extension field of F . If E is finite-dimensional as a vector
space over F , with dimension n say, then we say that E is a finite extension of degree n
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over F . We write [E : F ] for the degree n of E over F .

R This is just a finite extension, we are not saying that the fields involved are finite.
Furthermore, note that [E : F ] = 1 if and only if E = F .

Theorem 3.2.2 Every finite extension is an algebraic extension.

Theorem 3.2.3 Tower Law for field extensions If E is a finite extension of F and K is a
finite extension of E, then K is a finite extension of F and

[K : F ] = [K : E][E : F ].

3.2.2 Problems
1. Find the basis for the given vector space over the given field:

(a) R(
√

2) over R (b) C over R (c) Q( 4
√

2) over Q

2. Compute [E :Q] and find a basis of E over Q if

(a) E =Q(
√

2,
√

3) (b) E =Q( 3
√

5,
√
−2)

3. Show that x2−3 is irreducible over Q( 3
√

2).
4. Let α be an algebraic element of odd degree over a field F . Show that F(α) =F(α2).
5. Prove that Q(i) and Q(

√
2) are isomorphic as vector spaces, but not as fields.

6. Show that if E is a finite extension of F and [E : F ] is prime, then E is a simple
extension of F and E = F(α) for every α ∈ E such that α /∈ F .

7. Let E be a finite extension of the field F and let p(x) be irreducible over F of degree
d such that d - [E : F ]. Show that p(x) has no zeros in E.

8. Let f (x) be an irreducible polynomial in K[x]. Show that if F is an extension field
of K such that deg( f (x)) is relatively prime to [F : K], then f (x) is irreducible over
F [x].

3.2.3 Solutions
1. (a) Since

√
2 ∈ R and it is a root of the polynomial x−

√
2 ∈ R[x] of degree 1, it

follows that the basis is {1}.
(b) Note that R = C(i). We have that i is the root of the irreducible polynomial

x2 +1 over R of degree 2. Thus, deg(i,R) = 2 and the basis for C over R is
{1, i} (from Theorem 3.2.1).

(c) 4
√

2 is a root of the irreducible polynomial x4− 2 over Q of degree 4. Thus
deg( 4
√

2,Q) = 4 and the basis for Q( 4
√

2) over Q is {1, 4
√

2, 4
√

4, 4
√

8}.
2. (a) First we note that E = K(

√
3) where K =Q(

√
2). Let us consider these two

simple extensions.
First,

√
2 is a root of irr(

√
2,Q) = x2−2. Thus, B = {1,

√
2} is a basis for K

over Q. In other words, every element u in K can be written as u = a+b
√

2
for some a,b ∈Q.
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On the other hand,
√

3 is a root of irr(
√

3,K) = x2−3. Thus, B′ = {1,
√

3} is
a basis for E over K. In other words, every element v in E can be written as
v = u1 +u2

√
3 for some u1,u2 ∈ K, which further implies that,

v = a1 +b1
√

2+(a2 +b2
√

2)
√

3 = a1 +b1
√

2+a2
√

3+b2
√

6

for some ai,bi ∈ Q. Thus, v is a linear combination of the vectors in U =
{1,
√

2,
√

3,
√

6}. From v = 0 it follows that a1 = a2 = b1 = b2 = 0, that is, U
is a basis for E over Q and [E :Q] = 4.

(b) Similarly as before, we will consider the simple extensions of E over K and
of K over Q, where K = Q( 3

√
5). It is easy to see that the basis for K over

Q is {1, 3
√

5, 3
√

5
2} and the basis for E over K is {1,

√
−2}. Hence, the basis

for E over Q is the product of elements in the previous two bases, that is,
{1, 3
√

5, 3
√

5
2
,
√
−2, 3
√

5 ·
√
−2, 3
√

5
2√−2} and [E :Q] = 6.

3. If x2−3 would be irreducible over Q( 3
√

2), we can write is as a product of linear
factors over Q( 3

√
2). This means that

√
3 lies in Q( 3

√
2) and we have that Q(

√
3)≤

Q( 3
√

2). On the other hand,

[Q( 3
√

2) :Q] = [Q( 3
√

2 :Q(
√

3)] · [Q(
√

3) :Q]⇒ [Q(
√

3) :Q] | [Q( 3
√

2) :Q]⇒ 2|3,

which is not true. Thus, x2−3 is irreducible over Q.
4. Since α2 ∈ F(α) it follows that F ≤ F(α2) ≤ F(α). Since α is a root of the

polynomial p(x) = x2−α2 of degree 2 over F(α2), it follows that [F(α) : F(α2)]≤
2. Since

[F(α) : F ] = [F(α) : F(α2)][F(α2) : F ],

and [F(α) : F ] is odd, it must follow that [F(α) : F(α2)] = 1. Thus, F(α) = F(α2).
5. i is a root of the irreducible polynomial x2+1 over Q, thus [Q(i) :Q] = 2. Similarly,√

2 is a root of the irreducible polynomial x2− 2 over Q, thus [Q(
√

2) : Q] = 2.
Since Q(i) and Q(

√
2) are, as vector spaces over Q, of the same dimension, they are

isomorphic to each other.
Let us know suppose that there is a field isomorphism f : Q(

√
2)→ Q(i). This

means, that for some a,b ∈Q we have that f (
√

2) = a+ ib. Any homomorphism
between two fields over Q fixes the elements of Q. Hence, f (q) = q for all q ∈Q.
Thus, we have:

2 = f (2) = f (
√

2
√

2) = f (
√

2)2 = a2−b2 +2abi

From the above equation we must have ab = 0 and a2−b2 = 2, which means that
either a = 0 and b2 =−2 or b = 0 and a2 = 2, which is not possible. Hence, such
an isomorphism cannot exist.

6. Since F ≤ E and α ∈ E, it is easy to see that F(α)≤ E. Thus

[E : F ] = [E : F(α)][F(α) : F ] = p,

where p is prime. Since α /∈ F , we must have that [F(α) : F ]> 1, which means that
[F(α) : F ] = p and thus [E : F(α)] = 1. In other words, E = F(α).

7. Suppose that α ∈ E is a zero of p(x). Since p(x) is irreducible over F , we have that
[F(α) : F ] = deg(p(x)) = d. From [E : F ] = [E : F(α)][F(α) : F ] it follows that
[F(α) : F ] = d | [E : F ], which is not possible. Hence, p(x) has no zeros in E.
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8. Let α be a root of f (x) contained in some field extension of F . Observe that

[F(α) : F ][F : K] = [F(α) : K] = [F(α) : K(α)][K(α) : K]. (3.1)

Note that [K(α) : K] = deg( f (x)), since α is a root of f (x) which is irreducible
over K. From (3.1), it follows that [K(α) : K] | [F(α) : F ][F : K]. Since gcd([K(α) :
K], [F : K]) = 1, it follows that [K(α) : K] | [F(α) : F ]. Because K ≤ F it follows that
K[x]≤ F [x] and thus f (x) ∈ F [x]. Since f (α) = 0, we must have that irr(α,F) =:
g| f , and thus deg(g) ≤ deg( f ). In other words, [F(α) : F ] ≤ [K(α) : K]. Hence,
we must have that [F(α) : F ] = [K(α) : K]. If f would be reducible over F , then
deg(α,F)< deg(α,K), which is not possible. Hence, f must be irreducible over F .

3.2.4 Additional problems
1. Find a basis for each of the following field extensions. What is the degree of each

extension?
(a) Q(

√
3,
√

6) over Q
(b) Q( 3

√
2, 3
√

3) over Q
(c) Q(

√
2, i) over Q

(d) Q(
√

3,
√

5,
√

7) over Q
(e) Q(

√
2, 3
√

2) over Q
(f) Q(

√
8) over Q(

√
2)

(g) Q(i,
√

2+ i,
√

3+ i) over Q
(h) Q(

√
2+
√

5) over Q(
√

5)
(i) Q(

√
2,
√

6+
√

10) over Q(
√

3+
√

5)
2. Prove that Q(

√
3, 4
√

3, 8
√

3, . . .) is an algebraic extension of Q but not a finite exten-
sion.

3. Prove or disprove: π is algebraic over Q(π3).
4. Show that Q(

√
2) and Q(

√
3) are isomorphic as vector spaces but not as fields.

5. Prove that the fields Q( 4
√

3) and Q( 4
√

3i) are isomorphic but not equal.
6. Let K be an algebraic extension of E and E an algebraic extension of F . Prove that

K is algebraic over F . (Note: Do not assume that the extensions are finite.)
7. Let E be a field extension of F and α ∈ E. Determine [F(α) : F(α3)].

3.3 Algebraic closure. Constructible numbers
3.3.1 Theoretical background

Given a field F , the question arises whether or not we can find a field E such that every
polynomial p(x) ∈ F [x] has a root in E. This leads us to the following theorem.

Theorem 3.3.1 Let E be an extension field of F . The set of elements in E that are
algebraic over F form a field.

Corollary 3.3.2 The set of all algebraic numbers forms a field; that is, the set of all
complex numbers that are algebraic over Q makes up a field.
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Definition 3.3.1 Let E be a field extension of a field F . We define the algebraic closure
of a field F in E, denoted by FE , to be the field consisting of all elements in E that are
algebraic over F . A field F is algebraically closed if every nonconstant polynomial in
F [x] has a root in F .

Theorem 3.3.3 A field F is algebraically closed if and only if every nonconstant
polynomial in F [x] factors into linear factors over F [x].

Corollary 3.3.4 An algebraically closed field F has no proper algebraic extension E.

Theorem 3.3.5 Every field F has a unique algebraic closure.

We now state the Fundamental Theorem of Algebra, first proven by Gauss at the age of
22 in his doctoral thesis. This theorem states that every polynomial with coefficients in the
complex numbers has a root in the complex numbers.

Theorem 3.3.6 — Fundamental Theorem of Algebra. The field of complex numbers
is algebraically closed.

In ancient Greece, three classic problems were posed. These problems are geometric in
nature and involve straightedge-and-compass constructions from what is now high school
geometry; that is, we are allowed to use only a straightedge and compass to solve them.
The problems can be stated as follows.

1. Given an arbitrary angle, can one trisect the angle into three equal subangles using
only a straightedge and compass?

2. Given an arbitrary circle, can one construct a square with the same area using only a
straightedge and compass?

3. Given a cube, can one construct the edge of another cube having twice the volume
of the original? Again, we are only allowed to use a straightedge and compass to do
the construction.

After puzzling mathematicians for over two thousand years, each of these constructions
was finally shown to be impossible. We will use the theory of fields to provide a proof that
the solutions do not exist. It is quite remarkable that the long-sought solution to each of
these three geometric problems came from abstract algebra. First we note the following
definition.

Definition 3.3.2 A real number α is constructible if we can construct a line segment
of length |α| in a finite number of steps from a segment of unit length by using a
straightedge and compass.

Theorem 3.3.7 The set of all constructible real numbers forms a subfield of real num-
bers.

Lemma 3.1 If α is a constructible number, then
√

α is a constructible number.

Theorem 3.3.8 The field F of constructible real numbers consists precisely of all real
numbers that we can obtain from Q by taking square roots of positive numbers a finite
number of times and applying a finite number of field operations.
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Corollary 3.3.9 If γ is constructible and γ /∈Q, then there is a finite sequence of real
numbers α1, . . . ,αn = γ such that Q(α1, . . . ,αi) is an extension of Q(α1, . . . ,αi−1) of
degree 2. In particular, [Q(γ) :Q] = 2r for some integer r ≥ 0.

Corollary 3.3.10 The field of all constructible numbers is an algebraic extension of Q.

As we can see by the field of constructible numbers, not every algebraic extension of a
field is a finite extension.

We are now ready to investigate the classical problems of doubling the cube and
squaring the circle. We can use the field of constructible numbers to show exactly when a
particular geometric construction can be accomplished.

Theorem 3.3.11 Doubling the cube is impossible, that is, given a side of a cube, it is
not possible to construct with a straightedge and a compass the side of a cube that has
double the volume of the original cube.

Proof. Let the given cube have a side of length 1, and hence a volume of 1. The new cube
would have volume 2 and hence a side of length 3

√
2. But 3

√
2 is a root of the irreducible

polynomial x3−2 over Q, so
[Q( 3
√

2) :Q] = 3.

From Corollary 3.3.9, we have that 3 = 2r for some integer r, but no such r exists. �

Theorem 3.3.12 Squaring the circle is impossible, that is, given a circle, it is not always
possible to construct with a straightedge and compass a square having area equal to the
area of the given circle.

Proof. Let the given circle have radius 1 and hence an area of π . We would need to con-
struct a square of side

√
π . Since π is transcendental over Q, so is

√
π . The impossibility

of the construction follows from Corollary 3.3.10. �

Theorem 3.3.13 Trisecting an angle is impossible, that is, there exists an angle that
cannot be trisected with a straightedge and a compass.

Proof. An angle θ can be constructed if and only if a segment of length |cosθ | can be
constructed. Now 60◦ is a constructible angle, and we will show that it cannot be trisected.
Let α = cos20◦. From the formula cos(3θ) = 4cos3 θ −3cosθ , we have that

4α
3−3α =

1
2
.

That is, α is a zero of 8x3−6x−1. This polynomial is irreducible in Q[x] (it is left to the
reader as an exercise). Thus,

[Q(α) :Q] = 3

and by Corollary 3.3.9, α is not constructible. Hence, 60◦ cannot be trisected. �
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R Not that the regular n-gon, n ≥ 3, is constructible if and only if the angle 2π/n is
constructible, which is the case if and only if a line segment of length |2π/n| is
constructible.

3.3.2 Problems
1. Let E be an extension field of F . Prove that every α ∈ E that is not in the algebraic

closure of FE of F in E is transcendental over FE .
2. Let E be an algebraically closed extension field of F . Show that the algebraic closure

FE of F in E is algebraically closed.
3. Prove that the algebraic closure of Q in C is not a finite extension of Q.
4. Show that every finite extension of R is either R or isomorphic to C.
5. Show that the regular 9-gon is not constructible.
6. Show algebraically that it is possible to construct an angle of 30◦.
7. Referring to the figure below, where AQ bisects the angle OAP, show that the regular

10-gon (and therefore, regular 5-gon) is constructible.

3.3.3 Solutions
1. If α is algebraic over K = FE , then K(α) is algebraic over K. By definition, we also

have that K is algebraic over F . Thus we have that K is algebraic over F , and in
particular, that α is algebraic over F . Thus, α ∈ K, which is not possible. Thus α is
transcendental over K.

2. Let f (x) be a nonconstant polynomial in K[x], K = FE . Now, f (x) ∈ E[x] and, by
hypothesis, E is algebraically closed, so f (x) has a root α in E. From the previous
problem, if α /∈ K, then α would be transcendental over K, which cannot be true,
because α is a root of f (x) ∈ K[x]. Hence, we must have that α ∈ K, which shows
that K is algebraically closed.

3. For all n ∈ Z, n ≥ 2, the polynomial xn− 2 is irreducible in Q[x] by Eisenstein’s
criteria for p = 2. This shows that Q has a finite extension of arbitrary degree in
C. If QC were a finite extension of Q of degree r, then there would be no algebraic
extension of Q in C of degree greater than r, which is not true. Thus the algebraic
closure QC cannot be a finite extension of Q in C.

4. Because [C : R] = 2 and C is an algebraic closure of R, it must be that every
irreducible polynomial p(x) ∈ R[x] of degree greater than 1, is actually of degree
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2. If α is a root of such a polynomial, we note that C = R(α) and (see proof of
Kronecker’s theorem) it holds that

C∼= R[x]/〈p(x)〉 (3.2)

Let E be a field extension of R. If E 6= R, then there exists an element α ∈ E such
that α /∈ R. From the above explanation, it holds that p(x) = irr(β ,R) has degree
2. Since R(β ) ∼= R[x]/〈p(x)〉, it follows from (3.2) that R(β ) ∼= C. Since C is
algebraically closed, so is R(β ) and thus admits no proper algebraic extensions.
Since E is an algebraic extension of R(β ), we must have E = R(β ) and thus E ∼= C.

5. If a regular 9-gon could be constructed, then the angle 360◦/90◦ = 40◦ could be
constructed, and using bisection, an angle of 20◦ could be constructed. As seen in
the proof of Theorem 3.3.13, we know that such an angle is not constructible.

6. One can construct an angle of 30◦ if and only if one can construct a line segment of
length |cos30◦|=

√
3/2. Because

√
3 is constructible and quotients of constructible

numbers are constructible, an angle of 30◦ is constructible.
7. Since

• ∠OAP = ∠APO = 180◦−36◦
2 = 72◦ (the triangle OAP is isosceles)

• ∠QAP = ∠AOP = 36◦

from the Angle-Angle (AA) rule, it holds that4OAP∼4AQP. The triangle APQ
is isosceles, thus |AP| = |AQ| = r. Also, the triangle OAQ is isosceles, and thus
|OQ|= |AQ|= r. Taking ratios of the corresponding sides, we obtain

AP
OP

=
OA
AP
⇔ r

1− r
=

1
r
⇔ r2 + r−1 = 0.

By the quadratic formula we obtain that

r =
−1+

√
5

2

which is a constructible number. Thus we can construct an angle of 36◦ by taking a
line segment OP of length 1, drawing a circle of radius 1 at O and one of radius r at
P, and finding a point A of intersection of the two circles. Then ∠AOP measures 36◦.
Thus a regular 10-gon which has central angles of 36◦ is constructible. A regular
pentagon is obtained by starting at a vertex 1 of a regular 10-gon and drawing a line
segments to vertex 3, from 3 to vertex 5, from 5 to 7, from 7 to 9, and then from 9
back to 1. The vertices 1,2, . . . ,10 are ordered , e.g. clockwise.

3.3.4 Additional problems
1. (a) Consider the prime field Zp of characteristic p 6= 2. Show that not every

element in Zp is a square of an element in Zp. (Hint: 12 = (p−1)2 = 1 in Zp.
Deduce the desired conclusion by counting.)

(b) Show that no finite field of odd characteristic is algebraically closed. (Hint: By
counting, show that for such a finite field F , some polynomial x2−a for some
a ∈ F , has no zero in F . Similar idea as in (a).)

2. Prove that if E is an algebraic extension of a field F and contains all zeros in FE of
every f (x) ∈ F [x], then E is an algebraically closed field.
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3. Show that the regular 20-gon is constructible.
4. Show that the regular 30-gon is constructible.
5. Show that the angle 72◦ can be trisected.
6. Show that the regular 15-gon can be constructed.
7. Show that cos1◦ is algebraic but not constructible (Hint: Represent cos1◦ using

Euler’s formula eiϕ = cosϕ + isinϕ .)

3.4 Finite fields
3.4.1 Theoretical background

For every prime p and positive integer n, there is exactly one finite field (up to isomorphism)
of order pn. This field GF(pn) or Fpn is usually referred to as the Galois field of order pn.

Theorem 3.4.1 Let E be a finite extension of degree n over F . If |F |= q, then |E|= qn.

Corollary 3.4.2 Let E be a finite field of prime characteristic p, then |E|= pn for some
positive integer n.

Theorem 3.4.3 Let E be a finite field of pn elements contained in the algebraic closure
Zp of Zp. The elements of E are precisely the zeros in Zp of the polynomial xpn− x in
Zp[x].

Definition 3.4.1 An element α of a field is an n-th root of unity if αn = 1. It is a
primitive n-th root of unity if αn = 1 and αm 6= 1 for 0 < m < n.

Theorem 3.4.4 The multiplicative group 〈F∗, ·〉 of nonzero elements of a finite field is
cyclic.

Corollary 3.4.5 Every finite extension of a finite field is a simple extension.

Theorem 3.4.6 A finite field GF(pn) of on elements exists for every prime power pn.

Corollary 3.4.7 Let F be a finite field. Then for every n there exists an irreducible
polynomial in F [x] of degree n.

3.4.2 Problems
1. Find the number of primitive 8-th roots of unity in GF(9).
2. Find the number of primitive 10-th roots of unity in GF(23).
3. Let Z2 be an algebraic closure of Z2 and let α,β ∈ Z2 be zeros of p(x) = x3+x2+1

and q(x) = x3 + x+1, respectively. Show that Z2(α) = Z2(β ).
4. Show that a finite field of pn elements has exactly one finite subfield of pm elements

for each divisor m of n.
5. Let F be a field of characteristic p. Show that the mapping φ : F → F defined with
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φ(x) = xp is an automorphism.
6. Let F be a finite field. Show that every element of F is a sum of two squares in F .
7. Show that every irreducible polynomial in Zp[x] divides xpn− x for some n.

3.4.3 Solutions
1. Let z be primitive n-th root of unity. A power w = zk of z is a primitive l-th root of

unity for l = n
gcd(k,n) . This result comes from the fact that kl is the smallest multiple

of k that is also a multiple of n. In other words

lk = lcm(k,n)⇒ l =
kn

k gcd(k,n)
=

n
gcd(k,n)

.

Thus, if k and n are coprime, zk is also a primitive n-th root of unity. Therefore there
are φ(n) (φ is Euler’s totient function) distinct primitive n-th roots of unity.

The subgroup of a cylic group is cyclic. Moreover, for a finite cyclic group of order
n, every subgroup’s order is a divisor of n, and there is exactly one subgroup for
each divisor.

Since GF(9)∗ has order 8. The number of generators of subgroups (in this case the
whole group) of order 8 is φ(8) = φ(23) = 4. Thus, there are 4 primitive 8-th roots
of unity.

2. If we would have a primitive 10-th root of unity α , then α10 = 1. However,
|GF(23)∗|= 22, and thus GF(23)∗ contains no element of order 10. Hence, there
are no 10-th roots of unity in GF(23).

3. Both of the polynomials p(x) and q(x) are irreducible over Z2, and thus both
Z2(α) and Z2(β ) are extensions of Z2 of degree 3, and as such are subfields of
Z2 containing 23 elements. From Theorem 3.4.3 both of these fields must consist
precisely of the zeros in Z2 of the polynomial x8− x. Thus, we must have Z(α) =
Z(β ).

4. Let F = GF(pn). Consider the set

Sm(F) = {ω ∈ F : ω
pm

= ω}.

To be in this set, ω must be a zero of xpm− x. Thus, it must be that |Sm(F)| ≤ pm. If
F would have two subfields of pm elements, say S1 and S2, then

S1∪S2 ⊆ Sm(F)⇒ |S1∪S2| ≤ pm⇒ S1 = S2.

Thus, F has at most one subfield with pm elements. The zeros of xpm− x in Zp for a
field with pm elements. So, it suffices to show that all these zeros are in F . We know
that F∗ is cyclic. Let α be a generator, that is, all elements of F can be written as α i

for some positive integer i. Since α i is a zero of xpm− x, we must have that ipm = i
mod pn−1, or equivalently, (pn−1) | i(pm−1). There are exactly pm−1 such
elements (since m is a divisor of n). In other words, all pm−1 nonzero elements of
Zp that are zeros of xpm−x are in F . Trivially, 0 is also a zero of that polynomial and
is in F . Hence, all zeros are in F and thus form a subfield in F with pm elements.

5. Since F has characteristic p, it holds that (α +β )p = α p +β p. From this, one can
easily confirm that φ is indeed a homomorphism. Since F is finite, φ is surjective.
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Furthermore, kerφ is a proper ideal of F . Since F is a field, it only contains trivial
ideals and thus we must have that kerφ = {0}. In other words, φ is also injective,
which implies that φ is indeed an automorphism.

R The mapping φ is called the Frobenious automorphism. If F is a finite field
of characteristic p, this means that for every element α ∈ F we can find an
element β ∈ F such that α = β p.

6. We will consider two cases based on the characteristic of F .
• char(F) = 2. Let us cosinder the Frobenious automorphism φ(x) = x2. Then,

for every α ∈ F we can find a β ∈ F such that α = β 2 = β 2 +02.
• char(F) = p > 2. Let ψ : F∗→ F∗ be defined with ψ(α) = α2. If ψ(α) =

ψ(β ), then α2 = β 2. In other words, α = β or α = −β . Since β 6= 0 and
char(F) > 2, we must have β 6= −β . Thus, ψ is a 2-to-1 mapping, which
implies, since 0 is also a square, that there are

|F∗|
2

+1 =
|F |−1

2
+1 =

|F |+1
2

squares in F . Let A = {α2 : α ∈ F} and, for an arbitrary but fixed x ∈ F ,
B = {x−β 2 : β ∈ F}. Obviously, |A|= |B|= |F |+1

2 . If A∩B = /0, we would
have that |A∪B| = |A|+ |B| = |F |+ 1 > |F |, which is not possible. Hence,
there exist α,β ∈ F such that α2 = x−β 2, that is, x = α2 +β 2. Since x was
arbitrary, any element of the field can be written as a sum of two squares.

7. Let f be an irreducible polynomial in Zp[x] and let E be an extension field of Zp
containing a zero α of F such that [E : Zp] is finite, say n. Then E is a finite field
of order pn. This means that for every z ∈ E∗ we have that zpn

= z. In other words,
every z ∈ E∗ is a zero of xpn− x. Particularly, α is a zero of xpn− x.
Let I = 〈 f ,xpn− x〉 be an ideal in Zp[x] and J = 〈 f ,xpn− x〉 be an ideal in E[x]. We
have that x−α is a common factor of f and xp− x in E[x], thus J = 〈x−α〉. Note
that 1 /∈ J, because otherwise J = E, which is not possible. This implies also that
1 /∈ I, that is, I 6= Zp[x]. Since f ∈ I we have that 〈 f (x)〉 ⊆ I ( Zp[x]. Because
〈 f (x)〉 is maximal, we must have I = 〈 f (x)〉. Now, since xpn− x ∈ I, it follows that
f (x)|xpn− x.
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4.0.1 Theoretical background
In this section, we show that if E is an algebraic extension of F with α,β ∈ E, then α and
β have the same algebraic properties if and only if irr(α,F) = irr(β ,F). We shall phrase
this in terms of mappings. More precisely, if irr(α,F) = irr(β ,F), then there exists an
isomorphism ψα,β of F(α) onto F(β ) that maps each element of F onto itself and maps
α onto β . Let us introduce some terminology.

Definition 4.0.1 Let E be an algebraic extension of F . Two elements α,β ∈ E are con-
jugate over F if irr(α,F) = irr(β ,F), that is, if α,β are zeros of the same irreducible
polynomial over F .

Theorem 4.0.1 — Conjugation Isomorphism. Let F be a field and let α,β be algebraic
over F with deg(α,F) = n. The map ψα,β : F(α)→ F(β ) defined by

ψα,β (c0 + c1α + . . .+ cn−1α
n−1) = c0 + c1β + . . .+ cn−1β

n−1

for ci ∈ F is an isomorphism of F(α) onto F(β ) if and only if α and β are conjugate
over F .

Definition 4.0.2 An isomorphism of a field onto itself is an automorphism of the field.

Definition 4.0.3 If σ is an isomorphism of a field E onto some field, then an element
a of E is left fixed by σ if σ(a) = a. A collection S of isomorphisms of E leaves a
subfield F of E fixed if each a ∈ F is left fixed for every σ ∈ S. If {σ} leaves F fixed,
then σ leaves F fixed.
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Theorem 4.0.2 Let {σi : i ∈ I} be a collection of automorphisms of a field E. Then the
set E{σi} of all a ∈ E left fixed by every σi for i ∈ I forms a subfield of E.

Definition 4.0.4 The field E{σi} of the previous theorem is the fixed field of {σi : i ∈ I}.
For a single automorphism σ , we shall refer to E{σ} as the fixed field of σ .

Theorem 4.0.3 The set of all automorphisms of a field E is a group under function
composition.

Theorem 4.0.4 Let E be a field, and let F be a subfield of E. Then the set G(E/F) of all
automorphisms of E leaving F fixed forms a subgroup of the group of all automorphisms
of E. Furthermore, F ≤ EG(E/F).

Definition 4.0.5 The group G(E/F) is the group of automorphisms of E leaving F
fixed, or, more briefly, the group of E over F .

Theorem 4.0.5 Let F be a field of characteristic p. Then the map σp : F→ F defined by
σp(a) = ap for a ∈ F is an automorphism, the Frobenius automorphism, of F . Also,
F{σp}

∼= Zp.

4.0.2 Problems

1. Find all conjugates in C of:
(a)
√

2+ i over Q;
(b)

√
1+
√

2 over Q(
√

2).
2. Let E = Q(

√
2,
√

3,
√

5). If τ2 = ψ√2,−
√

2 and τ3 = ψ√3,−
√

3 are the conjugation
isomorphisms (in this case they are automorphisms of E) such that

τ2 :Q(
√

3,
√

5)(
√

2)→Q(
√

3,
√

5)(−
√

2), τ3 :Q(
√

2,
√

5)(
√

3)→Q(
√

2,
√

5)(−
√

3),

compute (τ3τ2)(
√

2+3
√

5) ∈ E. Find the fixed field of of the automorphisms τ3,
τ3τ2 and of the set of automorphisms {τ2,τ3} of E.

3. The fields Q(
√

2) and Q(3+
√

2) are the same, of course. Let α = 3+
√

2.
(a) Find a conjugate β 6= α of α over Q.
(b) Referring to the previous part, compare the conjugation automorphism ψ√2,−

√
2

of Q(
√

2) with the conjugation isomorphism ψα,β .
4. Describe the value of the Frobenius automorphism σ2 on each element of the finite

field Z2(α) = {0,1,α,1+α}, where α2 +α +1 = 0.
5. Let E be an algebraic extension of a field F . Let S = {σi : i ∈ I} be a collection of

automorphisms of E such that every σi leaves each element of F fixed. Show that if
S generates the subgroup H of G(E/F), then ES = EH .

6. Determine the group G(Q( 3
√

2)/Q).
7. Determine the group G(Q(

√
2,
√

3)/Q).
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4.0.3 Solutions
1. Two elements are said to be conjugate if they are the roots of the same irreducible

polynomial over some field. Thus, for the given algebraic elements we need to
find its irreducible polynomial and after that all the roots of that polynomial are the
conjugates of the considered element.

(a)

α =
√

2+ i

α
2 = 2+2

√
2i−1

α
2−1 = 2

√
2i

(α2−1)2 =−8

(α2−1)2 +8 = 0

Thus, f (x) = irr(α,Q) = (x2−1)2 +8 ∈ Q[x]. One can easily compute that
the roots of f in C, and thus the conjugates of α , are

√
2± i, −

√
2± i.

(b)

α =

√
1+
√

2

α
2 = 1+

√
2

α
2− (1+

√
2) = 0

Thus, f (x) = irr(α,Q(
√

2) = x2− (1+
√

2) ∈Q(
√

2)[x] and the conjugates in
C are obviously ±

√
1+
√

2.
2. The automorphism τ2 affects only

√
2 and maps it to −

√
2, whilst τ3 maps

√
3 to

−
√

3. The other elements are fixed. Thus, we have that

τ3τ2(
√

2+3
√

5) = τ3(−
√

2+3
√

5) =−
√

2+3
√

5.

To find the fixed fields of some set of automorphisms, we will use the following
method. First, we determine the basis of the field as a vector space overQ. After that
we see which elements the automorphisms affect. The ones that remain unaffected
determine the fixed field.
The basis of E over Q is

{1,
√

2,
√

3,
√

5,
√

6,
√

10,
√

15,
√

30}.

The automorphism τ3 does not affect

{1,
√

2,
√

5,
√

10}

which is the basis of Q(
√

2,
√

5) over Q. Thus, E{τ3} =Q(
√

2,
√

5). Since

τ3τ2(
√

6) = τ3τ2(
√

2
√

3) = τ3(−
√

2
√

3) = (−
√

2)(−
√

3) =
√

6,

the automorphism τ3τ2 does not affect

{1,
√

5,
√

6,
√

30},
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which is the basis of Q(
√

5,
√

6) over Q. Thus, E{τ3τ2} =Q(
√

5,
√

6). The automor-
phisms {τ2,τ3} do not affect

{1,
√

5},
which is the basis of Q(

√
5). Thus, E{τ2,τ3} =Q(

√
5).

3. (a) It is easy to see that α = 3+
√

2 is the root of the irreducible polynomial
(x− 3)2− 2 over Q. The other remaining root of the same polynomial is
3−
√

2. Thus, 3±
√

2 are conjugates over Q.
(b) Both ψ√2,−

√
2 and ψα,β are automorphisms ofQ(

√
2). Each element ofQ(

√
2)

can be written as x+
√

2y for some x,y ∈Q. Since the automorphisms leave x
and y fixed, let us consider where

√
2 is mapped under these automorphisms.

We have the following:

ψ√2,−
√

2(
√

2) =−
√

2

ψα,β (
√

2) = ψα,β (−3+(3+
√

2)) =−3+(3−
√

2) =−
√

2

Thus, we conclude that ψ√2,−
√

2 = ψα,β .
4.

σ2(0) = 02 = 0

σ2(1) = 12 = 1

σ2(α) = α
2 =−α−1 = α +1

σ2(α +1) = (α +1)2 = α
2 +1 =−α−1+1 =−α = α

Thus, it is easy to see that Z2(α){σ2} = Z2.
5. Since S ⊂ H, obviously EH ⊆ ES (because the set S is smaller than H, thus there

are at least as many automorphisms that fix S as there are for H). Let x ∈ ES and
let ψ ∈ H be arbitrary. Since S generates H, there exists σ1, . . . ,σk ∈ S such that
ψ = σ1 . . .σk. We note that

ψ(x) = σ1 . . .σk−1σk(x) = σ1 . . .σk−1(x) = . . .= σ1(x) = x.

In other words, x is fixed by an arbitrary automorphism in H, that is, x ∈ EH . Hence,
ES ⊆ EH and thus ES = EH .

6. An automorphism in G(E/Q) is completely determined by its values on 3
√

2, where
E =Q( 3

√
2). Let σ ∈ G(E/Q) be arbitrary. We have that

σ(c0 + c1
3
√

2+ c2
3
√

2
2
) = σ(c0)+σ(c1)σ(

3
√

2)+σ(c2)σ(
3
√

2
2
)

= c0 + c1σ(
3
√

2)+ c2σ(
3
√

2),

since σ fixes the elements in Q. Note that irr( 3
√

2,Q) = x2−2. Furthermore,

σ(
3
√

2)3−2 = σ(
3
√

2
3
)−σ(2) = σ(

3
√

2
3−2) = σ(0) = 0,

that is, σ( 3
√

2) is a root of x3−2 ∈ Q[x]. Since the only real root (more precisely,
only root in Q( 3

√
2)) of x3− 2 is 3

√
2, we must have σ( 3

√
2) = 3

√
2. Thus, σ = ι .

Hence, G(E/Q) = {ι}.
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7. If we consider Q(
√

2,
√

3) as Q(
√

3)(
√

2), the conjugation isomorphism ψ√2,−
√

2
defined by

ψ√2,−
√

2(a+b
√

2) = a−b
√

2, a,b ∈Q(
√

3)

is an automorphism of Q(
√

2,
√

3), which has Q(
√

3) as a fixed field (similar con-
clusions as in Problem 2). Analogously, ψ√3,−

√
3 is an automorphism of Q(

√
2,
√

3)
having Q(

√
2) as a fixed field. Let ι be the identity, σ1 = ψ√2,−

√
2, σ2 = ψ√3,−

√
3

and σ3 = σ1σ2 (which is also an automorphism as a composition of automorphisms).
The group of all automorphisms of Q(

√
2,
√

3) has a fixed field, by Theorem 4.0.2.
Trivially, this fixed field must contain Q as automorphisms of a field leave 1 fixed
and, as a consequence of that, leave Q fixed. If we consider the set of automor-
phisms G = {ι ,σ1,σ2,σ3}, they move all elements of the basis {1,

√
2,
√

3,
√

6} of
Q(
√

2,
√

3) over Q, except 1. Thus, Q(
√

2,
√

3)G =Q. It can be easily checked that
G forms a group under function composition. The group table for G is given below:

◦ ι σ1 σ2 σ3
ι ι σ1 σ2 σ3

σ1 σ1 ι σ3 σ2
σ2 σ2 σ3 ι σ1
σ3 σ3 σ2 σ1 ι

We will now show that G=G(Q(
√

2,
√

3)/Q). Since the basis ofQ(
√

2,
√

3) overQ
is {1,

√
2,
√

3,
√

6}, an automorphism τ ofQ(
√

2,
√

3) leavingQ fixed, is completely
determined by its values on

√
2 and

√
3. Now, ι , σ1, σ2 and σ3 give all possible

combinations of values on
√

2 and
√

3, and hence all possible automorphisms of
Q(
√

2,
√

3).

4.0.4 Additional problems
1. Find all conjugates in C of

(a)
√

2−
√

3 over Q;
(b)
√

2+ i over R;
(c)

√
1+
√

2 over Q.
2. With the same notation as in Problem 2, compute the indicated element of E:

(a) τ2(
√

2+
√

5);
(b) (τ5τ3)

(√
2−3
√

5
2
√

3−
√

2

)
;

(c) (τ2
5 τ3τ2)(

√
2+
√

45),
where τ5 = ψ√5,−

√
5 : (Q(

√
2,
√

3))(
√

5)→ (Q(
√

2,
√

3))(−
√

5).
3. Referring to the previous example, compute the fixed fields of the automorphisms or

set of automorphisms of E:
(a) σ2

3 ;
(b) {σ2,σ3,σ5};
(c) σ5σ3σ2.

4. Let F(α1, . . . ,αn) be an extension field of F . Show that any automorphism σ of
F(α1, . . . ,αn) leaving F fixed is completely determined by the n values of σ(αi).
(Hint: Use mathematical induction on n).

5. Determine the group G(Q(
√

2, i)/Q).
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